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ABSTRACT

This paper proposes a novel self-organising associative neural
network model in terms of kernel memory. The objective of this
paper is not to give a sophisticated learning scheme and its rigorous
mathematical accounts but rather attempt to address a paradigm
shift, which could potentially answer a number of critical issues
related to the current artificial neural network architectures. In the
new memory model, the notion of ‘weights’ between the nodes is
totally different from that as in ordinary neural network models,
in which the weights simply represent the strengths of the con-
nections between pairs of nodes in the kernel memory each re-
alised by a kernel unit. Hence any arduous and iterative tuning of
weight parameters is not involved and thereby the neural memory
does not inherently suffer from any numerically-related problems.
The associative memory is constructed via a simple unsupervised
learning algorithm motivated from the traditional Hebbian princi-
ple. In the simulation study, both the plasticity and performance of
the novel neural network architecture are discussed within the pat-
tern classification context through single and simultaneous multi-
domain classification tasks.

1. INTRODUCTION

The scientific study of human learning and memory in psy-
chology has established and provided us with a wealth of data
[1]. In the study, a great variety of models that take these data
into account have been proposed. These models suggest that the
human memory system is a central part of the cognitive process.
In general, creatures have a far more complex and flexible mem-
ory system, in both the structural and functional sense, than the
simple connectionist models (or, artificial neural networks) which
have as yet been proposed. Moreover, it is generally known that
their memory systems exhibit capability in both remembering and
forgetting (undesirable) events/objects and can therefore deal with
various problems which are essentially unavoidable for living.

In the artificial neural network field, multilayered perceptron
neural networks (MLP-NNs), which were pioneered in the early
1960’s [2, 3], have played a central role in the study of pattern
recognition tasks [4]. In MLP-NNs, sigmoidal functions are used
for the nonlinearity, and the network parameters, such as the weight
vectors between the input and hidden layers and those between
hidden and output layers, are usually adjusted by the backprop-
agation (BP) algorithm [5, 6, 7]. However, it is now well-known
that in practice the learning of the MLP-NN parameters by BP type
algorithms quite often suffers from becoming stuck in local min-
ima and requiring long period of learning, both of which are good
reason for detracting their utility in on-line processing. This ac-
count also holds for training the ordinary radial basis function type
networks [7] or self-organising feature maps (SOFMs) [8], since
the method for network parameters resorts to a gradient-descent
type algorithm, which normally requires iterative and long train-
ing. In addition, such networks normally need for training from
scratch, i.e., when new training data is arrived (i.e., incremental
training). The conventional MLP-NNs, radial basis function neu-
ral networks (RBF-NN)s [9], and SOFMs therefore do not seem

to be attractive candidates for elucidating the learning mechanism
of the brain (for more critical arguments in the existing artificial
neural networks, the see also [10]). Moreover, similar to the afore-
mentioned connectionist models, most of the recent works in sup-
port vector machines (SVMs) (for a concise survey, see e.g., [11])
have not been focused upon the issues of plasticity, albeit provid-
ing a vast amount of the mathematical / theoretical accounts and/or
performance improvement.

In the early 1990’s, Specht rediscovered the effectiveness of
kernel discriminant analysis [12] within the context of artificial
neural networks. This led him to establish the notion of a proba-
bilistic neural network (PNN) [13]. Subsequently, Nadaraya-Watson
kernel regression [14, 15] was reformulated as a generalised re-
gression neural network (GRNN) [16]. In the neural network con-
text, both PNNs and GRNNs have layered (though fixed) struc-
tures as in MLP-NNs and are categorised into a family of RBF-
NNs [9] in which the hidden neurons are represented by Gaus-
sian response functions (or, Gaussian kernels). From the statisti-
cal point of view, regardless of minor exceptions, it is intuitively
considered that the selection of a Gaussian response function is
reasonable for the general description of the real-world data, as
represented by a consequence of the central limit theorem. While
the roots of PNNs and GRNNs differ from each other, in practice,
the only difference between PNNs and GRNNs (in the strict sense)
is confined to their implementation; for PNNs the weights between
the RBFs and the output neuron(s) (which are given identical to the
target values for both the PNNs and GRNNs) are normally fixed
to binary (0/1) values, whereas GRNNs generally do not hold such
restriction in the weight setting.

The advantage of PNNs/GRNNs against such commonly used
neural networks as MLP-NNs, RBF-NNs, SOFMs, or SVMs is
that they are essentially free from tuning a number of network pa-
rameters to obtain a reasonable convergence rate or worrying about
any numerical instability such as local minima or long and iterative
training of the network parameters. By exploiting the property of
GRNNs and PNNs, simple and quick incremental learning is pos-
sible due to their inherent memory-based architecture, whereby the
network growing (i.e. incremental training) / shrinking is straight-
forwardly performed [17]. Moreover, in [18] it is reported that
these types of networks exhibit the capability in accommodation
of new classes, by exploiting the property of the straightforward
network growing / shrinking.

2. THE SELF-ORGANISING ASSOCIATIVE KERNEL
MEMORY

The concept of kernel memory is originally inspired from the
PNNs/GRNN models, in which the network has a memory-based
architecture and inherits the attractive property of straightforward
network growing / shrinking. However, as described later, the ker-
nel memory is more flexible in that it can be self-organised via
an unsupervised learning algorithm and thereby essentially has no
fixed structure, with allowing any kind of lateral connections be-
tween the kernel units.

Fig. 1 depicts the kernel unit used to construct the self-organising
associative memory (SAKM). Although any distance metric be-
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Fig. 1. The kernel unit.

tween two vectors a and b could be exploited for representing a
kernel function within the kernel memory concept, we hereafter
limit ourselves to consider a Gaussian response function as a ker-
nel function, without loss of generality. Then, in Fig. 1, the acti-
vation of the kernel function K(x) is defined as

Ki(x) = K(x, ci) = exp(−‖x − ci‖22
σ2

i

) (1)

In the family of RBF-NNs, this is nothing more than an RBF where
x = [x1, x2, . . . , xNin ]T (T : vector transpose) is the input vector to
the network, ci is the centroid vector, and σi is the radius. How-
ever, as implicitly indicated in the figure, the output (or activation)
of the i-th kernel function Ki(x) is not directly transferred to other
nodes in the post-layer(s) as in ordinary RBF-NNs (i.e., the output
layer). In other words, the weight value itself is not directly used
for the computation of the forwarding nodes; in the RBF-NNs,
each output neuron is calculated as the total sum of the weight
value times the activation of the hidden (i.e., the RBF) units, which
in general yields the final results. Instead, where necessary, the
links between the kernel and others are firstly established via the
addressing pointers pi,1, pi,2, . . . , pi,Np which indicate the adjacent
kernels of Ki. Then, the ‘link weight’ wi j between the kernel Ki
and Kj ( j = 1, 2, . . . ,Np, i � j) is assigned, the value of which
represents the strength of the connection in between.

As stated earlier, since the actual data is stored within the
template (centroid) vector ci the change in the values of the link
weights does not affect the data stored within the template vector
at all. Therefore, within the SAKM context, even a single kernel
can exhibit a generalisation capability; in the application to pat-
tern classification, a single kernel is to a certain extent capable of
classifying the patterns (for a Gaussian kernel, cf. [19]). More-
over, unlike conventional layered-type neural networks, there is
no constraint within the structure of SAKM, e.g., sparse represen-
tations or any lateral connections are allowed, whilst modelling
the ‘dense’ structures similar to correlation matrix memory [7] or
SOFMs is also possible, by exploiting the addressing pointer(s) of
a kernel unit in Fig.1. Nevertheless, within the SAKM context,
both the number of neurons and the weight connections are dy-
namically varied during the learning (or construction) phase.

In another respect, the proposed kernel concept lies between
the symbolic connectionism and artificial neural networks. How-
ever, compared to a conventional symbolic approach such as the
Minsky’s Knowledge-Line (or, simply denoted as K-line) concept
[20], the kernel memory can replace the ordinary symbolic ap-
proaches in that each node (kernel) can have a generalisation ca-
pability which could mitigate the ‘curse-of-dimensionality’ to a
greater extent. In contrast, since the kernel concept inherits the

properties of PNNs/GRNNs, the self-organising memory does not
involve any numerically-related problems, which are in general of
crucial to the overall performance, i.e., the convergence rate or
numerical instability, as commonly found in the conventional arti-
ficial neural network literature.

In Fig. 1, apart from the kernel function and the link weights
wi = [wi,1,wi,2, . . . ,wi,Np ]T , the kernel unit has both the excitation
counter εi and auxiliary memory ηi to store the class label (or ID).
The excitation counter εi is incremented every time the kernel is
excited, i.e., when the kernel function satisfies the relation

Ki(x) ≥ θK (2)

where θK is a given threshold. In this paper, the class label ηi is
fixed when the input vector is assigned to the template (centroid)
vector of the (Gaussian) kernel.

2.1. An Algorithm for Updating Link Weights Between the
Kernels

In [21] (p.62), Hebb postulated that “When an axon of cell A is
near enough to excite a cell B and repeatedly or persistently takes
part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as one of the
cells firing B, is increased.”. In this paper, the ‘link weights’ (or
simply, ‘weights’) between the kernels are defined in this neuro-
physiological context. Namely, the following conjecture can firstly
be drawn:

Conjecture 1: When a pair of kernels Ki and Kj
(i � j) in the SAKM are excited repeatedly, a new
link weight wi j between Ki and Kj is formed. Later,
if this is occurred intermittently, the value of the link
weight wi j is increased.

In the above, the Hebb’s original postulate for the physical
locations of the adjacent cells A and B is not considered, since, in
the actual implementation of the proposed scheme (to the memory
system of a robot, etc), it is not always necessary for such place
adjustment of the kernels. Secondly, the Hebb’s postulate implies
that the excitation of the cell A may be occurred due to the transfer
of activations from other cells via the synaptic connections. This
leads to the following conjecture:

Conjecture 2: When a kernel Ki is excited and one
of the link weights is connected to the kernel K j,
the excitation of Ki is transferred to Kj via the link
weight wi j. However, the amount of the excitation
depends upon the value of the link weight.

Based upon the conjectures 1 and 2 above, the following algo-
rithm for updating the link weights between a pair of the kernels
Ki and Kj is given:

[The Link Weight Update Algorithm]

1) If there is already established the link weight wi j,
decrease the value according to:

wi j(t) = wi j(t − 1) · exp(−ξ) (3)

(This simulates the time-wise synaptic decay.)

2) If the subsequent excitation of a pair of kernels Ki
and Kj (i � j) is occurred (the excitation is judged
by (2) given earlier) and repeated for p times, the link
weight wi j is updated as

wi j =

⎧⎪⎪⎨⎪⎪⎩
winit ; if wi j does not exist
wmax ; else if wi j > wmax
wi j + δ ; otherwise

(4)
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where ξ,winit,wmax, and δ are all positive constants. Both the con-
ditions 1) and 2) within the link weight update algorithm also agree
with the rephrase of the Hebb’s principle [22, 23]:

1. If two neurons on either side of a synapse are activated
asynchronously, then that synapse is selectively weakened
or eliminated.

2. If two neurons on either side of a synapse (connection)
are activated simultaneously (i.e., synchronously), then the
strength of that synapse is selectively increased.

Note that, to meet the second rephrase above, a decaying factor
is introduced within the link weight update algorithm (in Condition
1) above), to simulate the synaptic elimination (or decay). In this
paper, the second rephrase above is extended and interpreted such
that 1) the decay can always be occurred in time-wise (though the
amount of such decay is considered to be slight in a short period of
time) and 2) the synaptic decay can also be caused when the other
kernel(s) is/are activated via the transmission of the activation of
the kernel. In the link weight decay of the SAKM, the former is
represented by ξ, whereas the latter is on the assumption that the
potential of other end may be (slightly) lower than the one. At the
neuro-anatomical level, it is known that a similar situation occurs
due to the changes in the transmission rate of the spikes [21, 24]
or the decay represented by e.g., the long term depression (LTD)
[25]. These can lead to the modification of the second rephrase
and thus the following conjecture can be also drawn:

Conjecture 3: When the kernel Ki is excited by the
input x and has the connection to the kernel K j via
the link weight wi j, the activation of Kj is computed
by the relation

Kj(x) = γwi jIi (5)

where γ (0 << γ ≤ 1) is the decay factor and Ii is
defined as an indicator function:

Ii =

{
1 ; If the kernel Ki is excited (given in (2))
0 ; otherwise

In the above, the indicator function Ii is sufficient to describe the
situation where an impulsive spike (or the action potential) gener-
ated from one neuron is transmitted to the other via the synaptic
connection (for a thorough discussion, see, e.g., [24]), due to the
excitation of the kernel Ki, within the context of modelling SAKM.
The above also indicates that, apart from the regular input vector x,
the kernel can be excited by the secondary input, i.e., the transfer
of the activations from other nodes, unlike the conventional neural
architectures.

Consequently, both the construction of an SAKM (or the train-
ing phase) and the manner of testing the SAKM for pattern classi-
fication tasks are summarised as follows:

[Summary of Constructing A Self-Organising Kernel
Memory]

Step 1) Initially (cnt = 1), there is only a single kernel
in the SAKM, with the template vector identical to the
first input vector presented, namely, c1 = x(1) (and
setting η1 to the corresponding class ID). If a Gaussian
kernel is chosen, the unique setting of the radius σ (in
(1)) may be determined a priori.

Step 2) For cnt = 2 to {num. of input data to be pre-
sented}, do the following:

Step 2.1) Calculate all the activations of the kernels
Ki ( ∀i) in the SAKM by the input data x(cnt),
(as given by (1)). Then, if Ki(x(cnt)) ≥ θK (as
in (2)), the kernel Ki is excited. Check the ex-
citation of kernels via the link weights wi, by
following the principle in Conjecture 3. Mark
all the excited kernels.

Step 2.2) If there is no kernel excited by the input
vector x(cnt), add a new kernel into the SAKM,
with setting its template vector to x(cnt) (and ηi:
the corresponding class ID).

Step 2.3) Update all the link weights within the
SAKM by following [The Link Weight Up-
date Algorithm] given above.

[Summary of Testing the Self-Organising Kernel Memory]

Step 1) Present the input data x to the SAKM, and
compute all the kernel activations by (1) within the
SAKM. Check also the activations via the link weights
wi, by following the principle in Conjecture 3. Mark
all the excited kernels.

Step 2) Obtain the maximally activated kernel Kmax by

Kmax = max(Ki(x)) (6)

amongst all the excited kernels within the SAKM.
Then, if a classification task is performed, the classi-
fication result can be obtained by simply restoring the
class label ηmax from the auxiliary memory.

In the above, the excitation counters εi are not exploited, without
loss of generality, though such exploitation can lead to more flexi-
ble learning algorithms.

2.2. Simultaneous Multi-Domain Data Processing

Fig. 2 shows an illustrative example of the SAKM which can
process multi-domain data simultaneously.

In a systematic view point, the SAKM is a multi-(domain-
)input multi-output (MIMO) system, whilst conventional layered
type neural networks can be regarded as a single-(domain-)input
multi-output (SIMO) system, since essentially only a single do-
main input is treated. In this example, three different domain vec-
tors xn = [xn(1), xn(2), . . . , xn(Nn)]T (n = 1, 2, 3, and the length
Nn can be varied, according to the modality or the feature extrac-
tion mechanism) are simultaneously presented to the SAKM and
the same number of outputs (three) is obtained (thereby a three-
input three-output system is considered). In the figure, Kn

i (·) de-
notes the i-th kernel which is responsible for the n-th domain input
vector, and the bi-directional connections between the kernels or
those between the kernels and output neurons represent the link
weights wi j. (Note that the three output neurons, o1, o2, and o3,
are depicted, instead of the auxiliary memory ηi attached to the
respective kernel units, for the clarity.) It is also of notice that, as
described earlier, the activation from the kernel K3

1 can occur due
to the excitation of the kernel K1

1 via the link weight in between,
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Fig. 2. An example of the SAKM for multi-domain data process-
ing.

even if the regular input vector x3 does not cause such activation.
(In this paper, this sort of link is also referred to as an ‘associative
link’.) For instance, provided that the input vector x1 is given as
the feature vector of the voice sound uttered by a particular person
and given to the kernel K1

1 , it is possible to design an SAKM such
that, without presenting the feature vector x3 extracted from, say,
the corresponding facial image, the kernel K3

1 can be simultane-
ously activated by other sensory input. However, this simultaneous
activation is occurred only when K1

1 is excited, but not directly by
the activation of the kernel K1

2 (because there is no link between K1
2

and K3
1 ). Moreover, suppose that an appropriate built-in decoding

mechanism of the template vector c3
1 is already given to the sys-

tem, the facial image can eventually be restored from c3
1 by only

presenting the feature vector of the voice sound x1.
As discussed earlier, the integrated information processing of

this kind has not in general been considered by the conventional
approaches and cannot be carried out by considering a simple mix-
ture of the pattern classifiers, each of which is responsible for a
particular domain classification task (or, in other words, the agents),
as in typical modular approaches (see, e.g., [7]).

3. SIMULATION STUDY

In this paper, the objective of the simulation study is firstly
(1) to validate the performance of the SAKM for single-domain
pattern classification tasks using the datasets extracted from three
different domain databases, i.e., Speech Filing System (SFS) [26],
OptDigit, and PenDigit, where the latter two can be available from
the ‘UCI Machine Learning Repository’ of the University of Cali-
fornia. Then, the second objective is (2) to perform multiple (dual)
domain pattern classification tasks, using a combination of the two
datasets, the SFS and PenDigit, and observe how the kernels in one
domain can subsequently excite (some of) the kernels in the other
via the associative link weights so formed in between.

3.1. Parameter Settings

The SFS dataset contains a total of 900 patterns, whereas both
the OptDigit and PenDigit sets respectively consist of a total of
1600 patterns. The description of the data sets is summarised in
Table 1. For both the objectives (1) and (2) above, the parameters
chosen arbitrarily for performing the actual simulations are also
summarised in Table 2. As in Table 2, the combination of the
parameters was chosen as uniquely as possible for all the three
datasets, in order to perform the simulations in a similar condi-
tion. It was empirically confirmed that, as for the PNNs/GRNNs,
though the selection of the radii σi yields a significant impact upon
the generalisation capability, a unique setting of the radii value still

Length of Total Num. of Total Num. of
Each Pattern Patterns in the Patterns in the

Data Set Vector Training Set Testing Sets
SFS 256 540 360

OptDigit 64 1200 400
PenDigit 16 1200 400

Table 1. Data sets used for the simulation study.

Data Set
Parameter SFS OptDigit PenDigit

Decaying Factor
for Excitation γ 0.95 0.95 0.95

Unique Radius for
Gaussian Kernel σ 8.0 5.0 2.0

Link Weight
Adjustment Constant δ 0.02 0.02 0.02

Synaptic Decaying
Factor ξ 0.001 0.001 0.1

Threshold Value for
Link Weights p 5 5 5

Initializing Value
for Link Weights winit 0.7 0.7 0.6

Maximum Value
for Link Weights wmax 1.0 1.0 0.9

Table 2. Parameters chosen for the simulation study.

gives a reasonable performance for each dataset, which is sim-
ilar to the case of PNNs/GRNNs, whereas the other parameters
were arbitrarily chosen. Thus, during the construction phase of the
SAKM, the settings σi = σ (∀i) and θK = 0.7 were used. In ad-
dition, without loss of generality, the excitation of the kernels via
the link weights was restricted only to the nearest neighbours (i.e.,
1-nn) throughout the simulation study of this paper.

3.2. Single-Domain Pattern Classification

The objective of the single-domain pattern classification is to
observe how the SAKM is organised and demonstrate that the
SAKM can reasonably function as a pattern classifier.

Figs. 3 and 4 show respectively the variations in the monoton-
ically growing number of the kernels and the link weights formed
within the SAKM. To check the relative growing numbers for the
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Fig. 3. Simulation results of single-domain pattern classification
tasks - number of kernels generated.
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Fig. 4. Simulation results of single-domain pattern classification
tasks - number of links formed.

three different domain datasets, a normalised scale of the pattern
presentation number is used (in the x-axis). In the figures, each
number x(i) (i = 1, 2, . . . , 10) in the x-axis thus corresponds to
the relative number of the pattern presentation, i.e., x(i) = i ×
{the total number of patterns in the training set}/10.

From the observation of Figs. 3 and 4, it can be said that the
data structure of the PenDigit dataset is relatively simple, com-
pared to the other two, since the number of the kernels generated is
always the smallest, whereas that of the link weights is the largest.
As in Table 1, this is also considered due to the fact that, since the
length of each pattern vector (16) is the shortest among the three,
the pattern space can be constructed with a smaller number of data
points than the other datasets.

3.2.1. Impact of the Selection σ Upon the Performance

As aforementioned, similar to PNNs/GRNNs, the behaviour of
the SAKM (with Gaussian kernels) is particularly dependent upon
the selection of the radius σ, amongst all the parameters. To inves-
tigate this, the value of σ was varied from the minimum Euclidean
distance between a pair of pattern vectors in the training data set
and the maximum. Then, it was empirically found that the num-
ber of the kernels generated as well as the overall generalization
capability of the SAKM is dramatically varied, according to the
value σ, as shown in Fig. 5; when σ is close to the minimum dis-
tance, the number of the kernels is almost the same as the number
of patterns in the dataset. In other words, almost all the training
data were exhausted during the construction of the SAKM for such
cases, which is computationally expensive. However, it was found
that in turn the decrease in the number of the kernels does not im-
mediately corresponds to the relative degradation in terms of the
generalisation performance. This tendency was also confirmed by
examining the number of correctly connected link weights (i.e.,
the num. of the link weights which establish connections between
the kernels with the same class labels, though the results are not
shown in this paper).

Table 3 summarises the performance comparison between
the SAKM constructed (i.e., the SAKM when the pattern presen-
tation for the construction terminated) using the parameters given
in Table 2 and a PNN with the centroid vectors found by the well-
known MacQueen’s k-means clustering algorithm. To make a fair
comparison as much as possible, the numbers of the RBFs in the
PNN responsible for the respective classes were fixed to those of
the kernels within the SAKM. It was confirmed that for the three
datasets the overall generalisation performance of the SAKM is al-
most the same/slightly better than the PNN + k-means approach,
which is considered to be reasonable if the SAKM is applied to
pattern classification tasks. However, the more advantageous point
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Fig. 5. Simulation results of single-domain pattern classification
tasks - variations in the generalization performance of the SAKM
with varying σ.

Total Num. of General. General.
Kernels Generated Perf. Perf. of

within SAKM of SAKM PNN with k-means
SFS 184 91.9% 88.9%

OptDigit 370 94.5% 94.8%
PenDigit 122 90.8% 88.0%

Table 3. Comparison of generalisation performance between the
SAKM and a PNN using the k-means clustering algorithm.

is that, unlike ordinary clustering schemes, the number of kernels
necessary to yield a reasonable generalisation performance can be
automatically determined by the unsupervised algorithm described
in Section 2.1 and thus in this sense the SAKM approach is more
flexible.

3.3. Simultaneous Dual-Domain Pattern Classification

The dual-domain pattern classification task in this paper was
designed to imitate the situation where a specific voice sound (au-
ditory) input to a particular area of memory excites not only the
area responsible for the auditory modality but (in parallel) the vi-
sual, on the ground that appropriate built-in feature extraction mech-
anisms for the respective modalities are provided within the sys-
tem. This is thus somewhat relevant to the issues of modelling
associations between different cognitive modalities or, in a more
general context, the ‘concept formation’ [21] / imagery, in which
several perceptual processes are united together and thereby some
sort of the integrated notion or, what is called, Gestalt (or ‘data
fusion’) is formed.

For the actual simulation, both the SFS and PenDigit datasets
were chosen, each of which constituted a sub-SAKM responsible
for the specific domain data, and the cross-domain link weights (or,
the associative links) established between a certain number of ker-
nels within the sub-SAKMs were formed by the algorithms given
in Section 2.1. The parameters for updating the link weights for
the dual-domain task were almost the same as those of OptDigit
case for the single-domain as in Table 2, except σ = 8.0(2.0) for
SFS(PenDigit) (which yielded the reasonable generalisation capa-
bility) and winit = 0.75. For the formation of the associative links
between the two sub-SAKMs, the same values as those for the or-
dinary links (i.e., the link weights within the sub-SAKM) given in
Table 2 were used, except the synaptic decay factor ξ = 0.0005.
Moreover, for imitating such cross-modality, it is natural to con-

739



General. Perf. (GP) / Num. Excited Kernels
via the Associative Links (NEKAL)

GP NEKAL
SFS 86.7% N/A

PenDigit 89.3% N/A
Sub-SAKM(1)→ (2) 62.4% 141
Sub-SAKM(2)→ (1) 88.0% 125

Table 4. Generalisation performance of the dual-domain pattern
classification task.

sider that the way of presentation may affect the formation of the
associative links. In this paper, the patterns were presented alter-
natively across the two training data sets (viz., the pattern vector,
SFS #1, PenDigit #1, SFS #2, PenDigit #2, . . .).

In Table 4, the overall generalisation performance of the dual-
domain pattern classification task is summarised (besides the gen-
eralisation performance of each SAKM appeared in the first two
rows). In the table, the title ‘Sub-SAKM(1) → Sub-SAKM(2)’
(Sub-SAKM(1) is responsible for the SFS data set, whereas Sub-
SAKM(2) is PenDigit) denotes the overall generalisation perfor-
mance obtained by the excitations of the kernels within Sub-SAKM
(2) via the associative links from Sub-SAKM(1).

4. CONCLUSION

In this paper, a novel self-organising associative kernel mem-
ory (SAKM) has been proposed together with the Hebbian moti-
vated learning algorithm between the kernel units. It should be
noted that the proposed learning scheme is based upon relatively
a straightforward rule and yet can construct a dynamic associative
memory, whilst having the attractive features of PNNs/GRNNs,
e.g. easy network growing/shrinking and the robust performance,
which has not been possible/considered by the aforementioned
conventional neural architectures. An attempt has then been made
to achieve a paradigm shift from the conventional neural network
concept by altering the notion of the ‘weights’ and thereby the is-
sue of multi-domain data processing has been addressed. In this
paper, though the discussion of the SAKM has been limited only
within the pattern classification context, more general concept of
kernel memory will be given as the neural foundation for mod-
elling various psychological functions associated with the artificial
mind system [27]. Future work includes a further analysis of the
behaviour, the practical utility of the novel neural memory model
to sensor fusion (e.g. [28]) direction of research, which is also
related to the simultaneous multi-domain classification tasks, and
the application to language processing.
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