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In human speech recognition, words are analysed at both pre-lexical (i.e., sub-word) and lexical (word)
levels. The aim of this paper is to propose a constructive neuro-computational model that incorporates
both these levels as cascaded layers of pre-lexical and lexical units. The layered structure enables the
system to handle the variability of real speech input. Within the model, receptive fields of the pre-lexical
layer consist of radial basis functions; the lexical layer is composed of units that perform pattern matching
between their internal template and a series of labels, corresponding to the winning receptive fields in the
pre-lexical layer. The model adapts through self-tuning of all units, in combination with the formation of
a connectivity structure through unsupervised (first layer) and supervised (higher layers) network growth.
Simulation studies show that the model can achieve a level of performance in spoken word recognition
similar to that of a benchmark approach using hidden Markov models, while enabling parallel access to
word candidates in lexical decision making.

Keywords: automatic speech recognition; human speech recognition; spoken word recognition; artificial
neural networks; network growing model

1. Introduction

A central problem in processing of auditory information is the recognition of spoken words.
In the field of automatic speech recognition, approaches based upon hidden Markov models
(HMMs) have been most successful (Holmes and Huckvale 1994) and constitute a benchmark
for any approaches aiming for greater plausibility of their neural layout. The latter differ from
conventional HMMs, often having an explicit hierarchical structure that incorporates both pre-
lexical and lexical levels (McClelland and Elman 1986; Allen 1994; Norris 1994; Plaut and
Kello 1999; Scharenborg, Norris, ten Bosch, and McQueen 2005; Norris and McQueen 2008).
This hierarchical structure enables these models to generate expectations about word candidates
before the utterance is completed. Because of this, they can accommodate a growing body of
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88 T. Hoya and C. van Leeuwen

literature on the dynamic integration of information about word candidates during the course of
the utterance (Allopenna, Magnuson, and Tanenhaus 1998).

Illustrative is the model known as TRACE (McClelland and Elman 1986). TRACE was moti-
vated by classical models of word recognition such as Cohort (Marslen-Wilson 1987) and the
conceptual logogen model (Morton 1969). The TRACE model uses sub-word level information
by combining feature, pre-lexical and lexical representation layers. Activation in the lexical layers
builds up, based on pre-lexical information collected during the utterance; the system generates
multiple expectations simultaneously for various word candidates that are consistent with the
pre-lexical information so far as presented.

The TRACE model was able reasonably to account for segmenting a continuous speech stream
into isolated words and to simulate the effects of lexical competition and prediction. In this early
model, network structure is completely pre-specified, leaving no room for learning (Christiansen
and Chater 1999). It is still under debate whether feedback connections as used in TRACE are
needed for word recognition (McClelland, Mirman, and Holt 2006; Mirman, McClelland, and
Holt 2006).

Word recognition in the TRACE model is limited, as it takes only artificial speech segments
(i.e., ‘wickelphones’) as input, leaving aside the problem of processing real speech data. To our
knowledge, no neurally plausible hierarchical models of spoken word recognition exist that can
actually handle real speech samples (see also Scharenborg 2007). Scharenborg et al. (2005) pro-
posed the SPeM model; a model that can process real speech input in a hierarchical fashion,
comprising of both the pre-lexical and lexical levels. While incorporating some aspects of psy-
chological models, SPeM can hardly be seen as a hierarchical connectionist model but rather is
an augmented version of automatic speech recognition based upon HMM.

The present article proposes the Constructive Cascaded-Layer Neural Network, a neuro-
computational model for spoken word recognition that is equipped with both the pre-lexical and
lexical layers and deals with real speech data. The theory behind the actual network construction
is based upon the concept of kernel memory (Hoya 2005). Like a conventional neural network,
the kernel memory uses units to represent items in memory, linked by weighted connections.1

In three respects, the system differs from a conventional neural network. First, rather than using
artificially segmented speech as input, what each unit represents is determined by a particular ‘ker-
nel’ function, a concept of kernel regression theory. Second, rather than having static receptive
fields, the receptive fields in this model are adaptive. In the pre-lexical layer, the receptive field is
modelled by a radial basis function (RBF). The RBF has become accepted in a neurobiological
context: Hopfield (1995) suggests that, in order to recognise an object, the functional unit based
upon an RBF yields a more powerful biological device, compared with a sigmoidal function as
extensively exploited in multi-layered perceptron neural networks (MLP-NNs).

Third, in order to benefit from sub-word level information in the recognition process, a three-
layered structure is prescribed for the network. The first layer passes on its activity in a winner-
takes-all manner to the second layer. The second layer is the lexical layer. It is composed of
units that measure the similarity between their own, internal template and a series of labels,
corresponding to the winning receptive fields in the first, pre-lexical layer. Thereby, each unit in
the second layer performs serial-order detection of winning units in the first layer and eventually
outputs the value of similarity as its activation. Pulvermüller (2002) proposed a related idea in
the field of syntactical processing. Supported by neuropsychological/psycholinguistic findings,
he proposed that such a serial-order detection mechanism could be found at sub-cortical level in
the brain. The third layer is the output layer that eventually performs lexical competition based
upon the total sum values of activation from the second layer units.

The three-layered structure operates merely as a scaffold; the content of each level, unlike in the
TRACE model, is not determined a priori. Instead of the static and pre-defined network topology,
the proposed model is topologically unconstrained beyond the three-layer prescription. There
is initially only a single unit in the pre-lexical layer and no other units in the succeeding layers
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Connection Science 89

within the network. The entire network, including the interlayer connections, grows automatically
according to an incremental training rule, and thus the approach is data-driven. An advantage is
that the model can acquire new patterns, where necessary, without retraining the whole network
from scratch.

Moreover, even though the analysis of input speech is on a frame-to-frame basis at each layer,
importantly, the lower-level representations vary at a faster time scale than the higher-level ones,
as a result of abstraction. This feature of the model corresponds to the observation that, in human
speech recognition, auditory signals are analysed through a layered architecture of the temporal
cortex, where the signals are subdivided into smaller units and for speech signals bottom-up
processing from the pre-lexical to lexical level occurs (cf.Allen 1994).Abstraction, in combination
with unsupervised/supervised network growing, automatically yields a system in which the layers
represent a meaningful, hierarchical segmentation of spoken word input.A related model for visual
object recognition supported by neurophysiological data from visual cortex (Serre, Oliva, and
Poggio 2007) similarly uses the efficacy of bottom-up processing through different hierarchical
levels of abstraction.

In comparison with the TRACE model, our model does not operate with explicitly defined
features at the phoneme level, but instead representations are implicitly determined by
the RBFs.

Note also the discrepancy from ordinary, fully connected ‘three-layered’ perceptron models:
First, while the proposed model has the aforementioned feed-forward-type three-layered architec-
ture as in conventional MLP-NNs, the interlayer connections (i.e., both the connections between
Layers 1 and 2 and those between Layers 2 and 3) are not necessarily fully connected. In fact,
connectivity can be rather sparse; as a result of how it was established during the construction
phase. Second, while each node in all the three layers of MLP-NNs is uniformly represented by a
sigmoidal activation function, the units in the respective layers are represented by different types
of activation functions within the cascaded-layer neural network model (i.e., RBFs in the first,
another type of nonlinear functions measuring the similarity between the inner-held templates
and inputs obtained from the activation of the first layer units in the second, and the linear sums
in the third layer).

A detailed description of the proposed cascaded-layer neural network model is given in the
next section.

2. The constructive cascaded-layer neural network

Figure 1 shows an illustrative example of a layered network structure for spoken word recognition
that results after construction has been completed.

The first analysis of raw speech proceeds on a frame-to-frame basis. Raw speech is encoded
into a sequence of mel-frequency cepstral coefficients (MFCCs; Furui 1981) and presented to the
system as input (far left). Each frame is processed through three consecutive layers, each consisting
of multiple units. The first layer represents the input frames in a winner-takes-all manner; thus a
frame leads to a selection from multiple RBF units. The selection implies a process of abstraction.
Activation from the winning unit is being fed into the next layer. Here, the selection process is
repeated, leading to a higher level of abstraction, and likewise at the third level that eventually
yields a final score for a particular lexical category.

2.1. Construction of the network

The model structure is built from scratch. Starting from a blank slate, the network is constructed
based on the principle that at each level, a new unit is created whenever the ones already available
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. . . 

MFCC frame 

Data input 

g1 

g2 

w1 

w2 

wN 

...
. . . 

/Word 1/ 

/Word 2/ 

/Word N/ 

gM 

h1 

h2 

hL 

Layer 1 

(RBF units) 

Layer 2 

(word candidate units) 

Layer 3 

(category grouping units) 

Figure 1. Cascaded neural network model for spoken word recognition (after completion of the construction) – in
the figure, each unit in Layer 1 represents an RBF, and its activation value hi (i = 1, 2, . . . , L) is calculated using
Equation (1), given the MFCC frame data input x, whereas gj (j = 1, 2, . . . , M , in Equation (4)) and wk (k = 1, 2, . . . , N ,
in Equation (6)) are the activations from the word candidate units and category grouping units, respectively. The dashed
connections between Layers 1 and 2 depict the forwarded input to gj , consisting of not activation values (as in conventional
artificial neural network models) obtained from hi but symbols (i.e., representing maximally activated RBFs).

fail to generalise properly the information given. This automatically applies in the beginning,
when no units are available.

In Figure 1, Layer 1 is constructed independently from Layers 2 and 3, while both Layers 2 and
3 are simultaneously constructed after all RBF units in Layer 1 are configured. The construction
of the network as in Figure 1 thus takes the following two major steps:

Step 1: Construction of Layer 1 (i.e., the pre-lexical layer): addition of RBF units that are
responsible for sub-word level information.

Step 2: Based upon RBF units added/configured in Layer 1 in Step 1), construction of Layers 2
and 3 (i.e., the word and category grouping units, respectively), as well as the interlayer
connections, i.e., the connections between Layers 1 and 2 and those between Layers 2
and 3.

In Step 2, we have opted for a process of network growth: when a particular group of neuronal
units are co-activated, given a stimulus input, a connection between them is added to the network.
This connection relates the RBFs in Layer 1 and a category grouping unit in Layer 3 via a newly
established unit in Layer 2. Connection growth takes place during a construction step (to be
described later in detail): when a certain spoken word is given to the system, the units excited
by/responsible for it all become connected to each other. This manner of establishing the link
connections between the units in the layers is motivated by the postulate of Hebb (1949): ‘When
an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased’.

2.2. RBF units

As aforementioned, sub-word level information is obtained from a raw speech signal in the form
of a set of MFCCs. The cepstral coefficients obtained for a single frame of raw speech signal are
input to the sub-word level units, i.e., RBF units in the first layer. These units are set automatically
to represent information in the form of ‘centroid’ vectors. In essence, centroid vectors represent
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Connection Science 91

the midpoints of clusters detected in the input data of the layer. The addition of these units, as
well as setting their centroid vectors, occurs during the construction phase. In Figure 1, the output
activation from the RBF unit hi (i = 1, 2, . . . , L) is given as a Gaussian response function, i.e.,

hi(x) = exp

(
−‖x − ci‖2

2

σ 2

)
(1)

where ‖ · ‖2 denotes the L2-norm and x is the MFCC input data (for a single frame) and ci and
σ are the centroid vector and radius of the ith RBF unit, respectively. Then, as represented by
Equation (1), pattern matching between x and ci is essentially performed by measuring their
Euclidean distance, followed by a nonlinear transformation. In comparison with an ordinary
template matching scheme, this manner of pattern matching can be quite beneficial, since each
centroid vector can be seen as a template vector and every data point around the centroid can be
(moderately) covered by a regional space defined by a single template and the nonlinear function.
Thus, by tuning effectively both the parameters ci and σ , memory load can be dramatically reduced
in order to cover a particular pattern space.

2.3. Construction of Layer 1

The addition of RBF units to Layer 1 takes place in an unsupervised mode, according to Steps
1–3. RBF units are added to Layer 1 in a manner similar to the previously proposed network
growing schemes (Carpenter, Grossberg, and Reynolds 1991; Platt, 1991; Hoya and Washizawa
2007)2:

Step 1: Collect all the MFCC frame data obtained from all available speech samples.
Step 2: Initially, there is only a single RBF, of which the centroid vector is identical to the input

pattern obtained from the very first frame data of the first speech sample.
Step 3: Repeat the following, until all the frame data have been presented:

Step 3.1: Calculate the activation of all RBF units in Layer 1, given the frame data as
input (i.e., Equation (1)).

Step 3.2: For each RBF unit, if the activation is above a certain threshold θ , which is
given a priori, mark it as EXCITED.

Step 3.3: If there is no excited RBF, add a new RBF in Layer 1, with its centroid vector
identical to the input pattern. Then, unmark all the excited RBFs for the next
iteration. Otherwise, do nothing.

According to Equation (1), each RBF unit has two free parameters, i.e., the radius σ and centroid
vector ci . The former is given a priori as a scalar constant, while the latter is set during the
construction of Layer 1 as specified by Steps 2 and 3 of the algorithm.

2.4. Neural mechanisms for serial-order detection

Since the formulation by McCulloch and Pitts (1943), the problem of how serial-order detection
of multiple events can be neurally performed has been studied in the neurophysiological domain
(Lasyley 1951; Kleene 1956; Reichardt and Varju 1959; Barlow and Levick 1965; Abeles 1991;
Hubel 1995; Braitenberg, Heck, and Sultan 1997; Pulvermüller 2002). In terms of connectionist
models, Elman (1990) utilised Jordan’s recurrent network model (Jordan 1986) for finding a
particular structure in sequentially given data. Exploiting this feature could realise functionality
similar to a serial-order detection mechanism. However, since the network model is a variant of
MLP-NN augmented with reciprocally connected ‘memory layer’ units, in practice, the network
training normally involves an iterative and rather long tuning of the parameters, and thus it may
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92 T. Hoya and C. van Leeuwen

quite often suffer from problems of numerical instability such as being stuck in local minima or
slow convergence/divergence. Hence, this approach does not facilitate online processing.

The role of each unit gj in Layer 2 in Figure 1 is to integrate the sub-word information obtained
in time-wise from the pre-lexical layer (i.e., Layer 1). This involves the processing due to a gener-
alised version of the so-called mediated serial-order processing (Pulvermüller 2002): when events
A1, A2, . . . , AN occur, the neuronal units responsible for the respective events α1, α2, . . . , αN are
activated, and there is another neuronal unit β that is connected to all these units and becomes
active, if and only if the sequence of activations from α1, α2, . . . , αN is detected.

In the proposed model, the notion of mediated serial-order processing is applied to the process-
ing by the units in Layer 2 for detection of the serial-order of winning receptive fields in Layer 1
(i.e., maximally activated RBF units for the respective MFCC frame data).

2.5. Input data representation for the units in Layer 2

Whenever a maximally activated RBF unit in Layer 1 is determined for a single frame of MFCC
data, rather than its activation value, the label of the unit will be transferred to Layer 2. (For
instance, if the maximally activated unit is h1 as in Figure 1, the numerical value ‘1’ is transferred.)
Activation of the same RBF by subsequent input frames are mapped onto a single value, e.g., 4,
4, 4 → 4. This feature of the model reduces input variability to a certain extent. Then, all the
values obtained for all the subsequent frames of a whole word pattern are collected and given as
an input vector to the second layer units g1, g2, . . . , gM in Figure 1. Serial-order between frames,
therefore, is not explicitly encoded by the model. However, serial-order is reproduced by the
read-out algorithm that the word candidate units use for measuring the similarity between these
vectors and their own intrinsic templates.

2.6. Units representing word candidates

As with the RBF units in the first layer, the role of each unit gj (j = 1, 2, . . . , M) in the second
layer is to measure the similarity between its template and the input vector. Also, word candidate
units are configured automatically during the construction phase. We assume that there can be
multiple word candidates for a single spoken word input. This is because of the variability in
spoken word input; the abstraction in the first layer does not sufficiently reduce this variability to
yield a unique matching lexical candidate at this level. Because multiple second layer units may
correspond to the same word (or, interchangeably, lexical category), we hereafter call them ‘word
candidate units’.

The input vector y and template uj corresponding to the j th word candidate are defined,
respectively, as:

y = [y(1), y(2), . . . , y(Ny)]
uj = [uj (1), uj (2), . . . , uj (N

j
u )] (2)

where each element y(p) (p = 1, 2, . . . , Ny) denotes the label of a maximally activated RBF unit
in the first layer, given the data points of the pth MFCC frame data (i.e., last frame: Ny):

y(p) = arg(max(hi(xp))). (3)

For example, the numerical values in the template vector

uj = [1, 2, 3, 4]
represent the case where the RBF units with the labels ‘1’, ‘2’, “3’, and ‘4’ subsequently were
maximally activated, as an encoding of four consecutive frames of MFCC data obtained in a
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particular spoken word. The activation of the j th word candidate unit is defined as

gj = min(Ny, N
j
u )

max(Ny, N
j
u )

δ(y, uj ) (4)

where δj (y, uj ) is a function expressing the similarity between y and uj .
For performing lexical competition in the simulation study to be described later, only T (< Ny)

consecutive frames are taken into account for measuring the similarity, i.e.,

gj (T ) = min(T , N
j
u )

max(T , N
j
u )

δ(y′, uj )

y′ = [y(1), y(2), . . . , y(T )].
(5)

(In the above, the parameter T therefore determines the proportional length of the initial
segment.)

Note that, because of the way the input is encoded eliminates repetitions of identical labels,
measuring the similarity is equivalent to detecting a particular serial-order of maximally activated
RBFs in Layer 1. For instance, Figure 2 shows a part of the network involved in detecting the
serial order represented by uj .

In practice, the actual reading-out computation described in the previous subsection can be
essentially achieved by the one similar to calculating the ‘edit-distance’ between two strings
(Duda, Hart, and Stork 2001). For example, if y is given as

y = [1, 3, 1, 2, 2, 4, 4, 5]
a calculation of the edit-distance is illustrated in Figure 3. Then, in this case, δj (y, uj ) = 3, and
thus gj = 4/8 × 3 = 1.5.

By virtue of the edit distance procedure in Figure 3, the activation from RBF units with the
labels ‘3’ and ‘5’, which appear in y(2) and y(8), respectively, can automatically be classified as
irrelevant insertions, which are treated as ‘noise’ and thus not taken into account.

In sum, we may compare the four operations in the edit-distance procedure in Figure 3 to
the neural detection of serial-order within the sub-network of Figure 2: the ‘no change’ operation
corresponds to increase in the activation of a word-candidate unit, while the other three operations
of ‘deletion’, ‘insertion’, and ‘exchange’ have no effect in terms of activation. For instance, the
activation of h3 (i.e., the value of y(2) = 3) is not taken into account, since, during the first-half
round of serial-order detection, gj waits only for the occurrence of the subsequent activation from
h1 followed by h2. This skipping of redundant insertions in the input is equivalent to the deletion
operation in the edit-distance procedure. Similarly, the activation of h5 (i.e., y(8) = 5) is ignored,

MFCC frame 

Data input 

gj

h1

h2

h4 

h3

1---

-2--

--3-

---4

uj=[1,2,3,4]

Figure 2. Example of a part of the network involved in detecting a serial-order – where the word candidate unit g1 has
the connections with the four RBFs h1–h4 in Layer 1 and detects the serial-order of the activations from the four RBFs.
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1 2 3 4

1 

3 

1 

2 

2 

4 

4 

y 

uj 

5 

1 

1 

2 

3 

3 

3 

No change: (+1)

Deletion: (0) 

Insertion: (0) 

Exchange: (0) 

1 

2 

2 

Figure 3. Illustrative example of calculating the modified edit-distance between y and uj (cf. Duda et al. 2001); in the
procedure, the four operations of ‘no-change’, ‘deletion’, ‘insertion’, and ‘exchange’ are involved. (Then, the priority of
the four operations is given in this order).

simply because no connection has been established between h8 and gj . Repeated activation of
the same RBF h2 or h4 is ignored. This, again, corresponds to the deletion operation in the edit-
distance procedure: the pairs y(4) and y(5) and y(6) and y(7) are mapped on to the respective
single values 2 and 4.

2.7. Category grouping units

As in Figure 1, each unit wk (k = 1, 2, . . . , N) in the third layer summates over the activations
from all the word candidate units that fall in a particular lexical category and eventually outputs
the final score for the corresponding lexical category. Then, the activation of the category grouping
unit wk up to the presentation of the pth (p = 1, 2, . . . , Ny) frame data is defined as

wk(p) = 1

ξ

∑
l

gl(p), l ∈ [all the word units for a particular lexical category]

ξ =
M∑

j=1

gj (p).

(6)

Finally, the recognition result at the pth frame data presentation is obtained by applying the
‘winner-takes-all’ strategy, i.e.:

[Final Recognition Result] = arg(max(wk(p))). (7)

2.8. Construction of Layers 2 and 3 and the interlayer connections

Once the construction of Layer 1 is completed, both Layers 2 and 3 are subsequently constructed on
the basis of the activation patterns obtained from RBF units in Layer 1. Similar to the construction
of Layer 1, the addition of both the units representing word candidates and category grouping
units is performed in a growing fashion, while the interlayer connections, i.e., the connections
between RBF units in Layer 1 and the word candidate units in Layer 2, and those between the word
candidate units and category grouping units in Layer 3, are also established during the construction.
However, in contrast to the unsupervised addition of RBF units in Layer 1, the addition of units in
Layers 2 and 3, as well as establishment of interlayer connections, is performed in a supervised
mode; the category label assigned to a spoken word is used as the target value. In the following,
the construction of Layers 2 and 3 is summarised:
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. . . 

MFCC frame 

Data input 

g1 

g2 

w1 

w2 

Category A 

g3 

h1 

h2 

hL 

Category B 

Figure 4. Construction of Layers 2 and 3 and the establishment of the interlayer connections: the resultant network
structure after adding a new word candidate unit g3 that falls into category A.

Step 1: Repeat the following for all available speech samples:
Step 1.1: For all the frame data for a spoken word, Layer 2 receives a serial-order pattern

of maximally activated RBFs in Layer 1.
Step 1.2: If Layer 2 is empty or if the category to which a maximally activated word

candidate unit in Layer 2 belongs (i.e., the category represented by the link
connection with a category grouping unit in Layer 3) differs from that of the
input word, do the following:
Step 1.2.1: Add a new word candidate unit into Layer 2 with setting its template

vector as the serial-order pattern received in Step 1.1.
Step 1.2.2: Establish connections between the newly added word candidate

unit and all RBF units in Layer 1 that appeared in the serial-order
pattern.

Step 1.2.3:
• If there is already a unit representing the same category in Layer

3, establish a connection between the category grouping unit and
the newly added word candidate unit.

• Otherwise, add a new category grouping unit in Layer 3 with
the same category label as the input word candidate unit and
establish the link connection in between.

Otherwise, do nothing.

In Step 1.2.1, note that the nodes in Layer 2 intrinsically exhibit a many-to-one mapping: for a
single category, there can eventually be multiple word candidate units with different serial-order
templates in Layer 2 during the construction. Suppose, for instance, that there are two word
candidate units g1 and g2 that belong, respectively, to the categories A and B (i.e., connected
with the respective category grouping units w1 and w2 in Layer 3) with the template vectors
u1 = [1, 2, 3, 4] and u2 = [1, 3, 5, 6, 7, 9], respectively. Then, suppose that a new word candidate
unit g3 that falls into category A is about to be added in Layer 2 with setting u3 = [2, 5, 6, 7, 8]
and establishing the link connection with w1; the resultant network structure will be illustrated in
Figure 4.

3. Simulation study and discussion

In order to test the proposed model, a simulation study was performed, using data sets consisting
of spoken digit words in Japanese.
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Table 1. Spoken digit datasets used for the simulation study.

Num. training Num. testing Num. digits
patterns patterns used

Data set 1 (single speaker) 780 910 13
Data set 2 (seven speakers) 504 336 12 (-/SHICHI/)
Data set 3 (88 speakers) 720 336 12 (-/JU/)

3.1. Data sets used

For the simulation study, we used two different Japanese spoken digit data sets as summarised in
Table 1.

Non-trained Japanese native speakers produced these utterances in an ordinary room. Record-
ings were made with a moderate level of background noise, no noise reduction was performed.
Words were originally sampled at 44.1/22.05 kHz, with the frame rate/analysis window size of
16/32 ms, and converted into a training/testing pattern consisting of 12 MFCC frame data points
(using the HCopy program available from HTK package (Young et al. 2005)).

Data set 1 was recorded from a single speaker, Data set 2 from seven speakers. In the recording
session, each speaker was asked to utter a Japanese digit word at once, and, for each digit, this
was repeated for 130 (Data set 1)/10 times (Data set 2). In contrast, Data set 3 was obtained from
a total of 88 different speakers, each producing only a single utterance. The Japanese digit words
recorded were: ‘ichi’ (one), ‘ni’ (two), ‘san’ (three), ‘yon’ (four), ‘go’ (five), ‘roku’ (six), ‘nana’
(seven-1), ‘shichi’ (seven-2; for Data set 1 only), ‘hachi’ (eight), ‘kyu’ (nine), ‘ju’ (ten), ‘zero’
(zero-1), ‘rei’ (zero-2) (i.e., 13 digits in total). In the simulation study, both Data sets 1 and 2
were used for speaker-dependent tasks, while Data set 3 was used for speaker-independent tasks
(tasks in which the training and testing patterns were produced by different speakers; utterances
obtained from 60 speakers were used for the training, and the remaining 28 for the testing).

3.2. Overall recognition performance

Table 2 compares the overall recognition performance of the cascaded neural network to a bench-
mark. For this purpose, a state-of the-art HMM approach was used (for an introduction, e.g., see
Rabiner and Juang 1993). In Table 3, both the numbers of RBF units and word candidate units
generated within the cascaded neural network during the construction phase are shown.3

Table 2 shows that the overall recognition performance obtained by the network is comparable
to that of the HMM for Data sets 1–3. The number of word candidate units can be regarded as a

Table 2. Simulation results – overall recognition performance (best scores obtained).

Data set 1 (%) Data set 2 (%) Data set 3 (%)

Cascaded neural network 98.5 92.9 90.8
HMM 99.1 89.9 94.6

Table 3. Simulation results – number of sub-word/word candidate units generated during
construction of the cascaded neural network model.

Data set 1 Data set 2 Data set 3

Num. RBF units 134 3635 100
Num. word candidate units 91 206 311
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Figure 5. Results of lexical competition using cascaded neural network model – where the target digits were (a) ‘san’,
(b) ‘nana’, and (c) ‘shichi’, respectively; in the figures, y-axis is the normalised activation level of the category grouping
unit corresponding to the target digit, whereas x-axis is the proportional length of input patterns in terms of number of
MFCC frame data.
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direct reflection of the number of speakers included in the data sets: relatively small for Data set
1, larger for Data set 2, and largest for Data set 3. This illustrates that the number of these units
captures the variability of utterances between different speakers.

3.3. Simulation results on lexical competition

To investigate how a cascaded neural network behaves during the recognition phase, we here
consider the lexical competition among several candidates under presentation of the initial part
of the word. The simulation strategy follows essentially the same principle as in the study using
the TRACE model (Allopenna et al. 1998).

More specifically, using Data set 1, we presented each testing pattern, varying the length
of the input pattern in terms of number of MFCC frame data. Then, the activation from each
word candidate unit is calculated by Equation (5). Figure 5(a)–(c) show the results of lexical
competition using the cascaded neural network where the target digits were ‘san’, ‘nana’, and
‘shichi’, respectively. Each plot shown in the figures was the normalised activation of the category
grouping unit corresponding to the digit (i.e., calculated using Equation (6)) averaged over all the
testing patterns for a particular lexical category (i.e., a digit), as a function of the proportional
length of the initial segment.

In Figure 5(a), the target digit was ‘san’, and it clearly shows that ‘shichi’ can be regarded as a
cohort, since the initial unvoiced part ‘sh’ is considered to be shared by ‘san’ and ‘shichi’, and that
both the digits ‘go’ and ‘ni’ are unrelated to the target. Similarly, it is shown in Figure 5(b) that
the initial nasally voiced part is shared by ‘nana’ and ‘ni’, at a relatively higher level of activation
than that of ‘nana’, but, at around 30% of presentation amount, the activation level of ‘ni’ quickly
drops. Figure 5(c) compares the target digit ‘shichi’ with the two rhymes ‘hachi’ and ‘ichi’. As
expected, the activation levels for both ‘hachi’ and ‘ichi’ were increased monotonically and kept
relatively high at the later amount of input presentation.

4. Conclusion and discussion

We proposed a cascaded neuro-computational model for spoken word recognition. The model
is based upon the concept of two-staged processing as suggested in human speech recognition
research. Each pre-lexical unit represents a neurally plausible receptive field, modelled by an
RBF. Each lexical candidate represents an abstract word template consisting of the dominant
RBFs detected in the input sequence. The two-stage structure is built incrementally from data,
using a combination of simple unsupervised and supervised network growing. Performance of the
network functions is comparable to that of a state-of-the-art engineering model based on HMM
(e.g., see Rabiner and Juang 1993).

HMM is a statistical model for a general pattern classification purpose.4 For the application
to spoken word recognition, a word is modelled by a limited (or usually small) number of states
and their transition probabilities.5 After training, each word will have its own HMM, in which
each state represents a macroscopic representation of sub-word information, approximated by a
mixture of probability density functions, and it is normally assumed that the transitions between
the respective states occur only in a single direction in time (i.e., from early to late).

On the other hand, in our model, each RBF unit in the first layer represents a particular word seg-
ment that can be common to several word representations. The segment can repeatedly be activated
during the course of a single word presentation. Then, even for a single word category, multiple
word candidate units can be created in the second layer during the construction, if they differ
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sufficiently from each other. Therefore, the combination of multiple locally clustered data repre-
sentations in the currently proposed model enables the representation of sub-word information.
Thereby, it is possible to perform online local tuning of the system against variations in the training
set (i.e., incremental training), which is impossible in conventional HMM approaches, due to their
holistic representation and non-one-shot parameter tuning by the use of Baum-Welch and Viterbi
algorithms. In other words, it is considered that the feature of online network growing as in the
present approach could greatly contribute to develop a speech recognition system with adaptabil-
ity and capability of dealing with context sensitivity, both the abilities of which are inherently
held in human language faculty.

Unlike conventional artificial neural network approaches, the cascaded neural network is grown
from input data. Growth of the network in the respective layers and their connections follows
essentially the same principle across layers: adding a unit, whenever the system encounters a new
pattern that cannot be covered by the receptive fields of the existing structure.

The model assumed a serial-order read-out mechanism in Layer 2 that can be applied to
any superordinate–subordinate relationship of a given data structure. For instance, connectivity
between multiple words in a sentence, i.e., syntactical structure could, in principle, be modelled
by applying such a sequence detection mechanism (cf. Pulvermüller 2002).

The present model bears resemblance to a feed-forward architecture that has recently been
applied to visual object recognition (Serre et al. 2007). This model was developed in order to
account for rapid categorisation in visual system. Multi-layered feed-forward network struc-
ture may be vital for rapidly categorising sensory information. In the auditory domain, a
feed-forward structure must be combined with a sequence detection mechanism, for temporal
pattern recognition. The present article presents a possible strategy how this combination can be
implemented.

Although the application of the proposed model in this article is limited to the recognition of
a rather small number of isolated spoken words, it can still be extensible to apply for a larger
lexicon and connected word/continuous speech recognition tasks. The latter can be possible, with
a slight modification to the manner of computation for the activation from a word candidate unit in
Equation (4), by taking into account the averaged total number of consecutive frames calculated
for each word category during the training.

In the present article, only interlayer connections with binary values (i.e., 1: connected, 0: not
connected) between Layers 2 and 3 were considered during the network construction phase (in
Section 2.8). However, the model could benefit from introducing variable weight connections, thus
enabling neural plasticity of the Hebbian type (Hebb 1949). This manner of modifying link weight
connections has previously been introduced successfully to kernel memory in a pattern classifi-
cation application (Hoya 2005). We expect that with this extension more robust performance will
ensue on word recognition under noisy conditions.
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Notes

1. In this article, however, without loss of generality, we consider only uniformly weighted connections between units.
2. In another view, the node-adding manner can also be viewed as a simplified version of Gaussian ARTMAP

(Williamson 1996); Gaussian ARTMAP is a variant of ARTMAP model (Carpenter et al. 1991), with incorporating
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Gaussian distribution functions as category units into its adaptive resonance theory modules; a new unit (i.e., new
category node) may be created when an input pattern sufficiently differs from other category nodes, depending upon
the value of the vigilance parameter. However, unlike the proposed approach, both the mean (i.e., corresponding to
the centroid vector here) and standard deviation variables of a certain category node (cf. Equation (1)) are updated,
whenever an input pattern matches (or resonates) it.

3. The generation of RBF units depends upon the selection of σ (in Equation (1)). In the simulation, we selected the
value of σ for Data set 2 much smaller than that for Data set 3, in order to achieve a reasonable performance, and
thus the number of RBF units generated during the training phase increased as such.

4. Although Rao (2004) studies the neural-plausibility of HMM in depth, we do not dig into this issue here.
5. Sub-word information corresponds in an HMM to states which are defined as mixtures of probability density

functions (i.e., normally represented by a multivariate Gaussian mixture). A matching score between word input
and an HMM is eventually evaluated as a joint probability, obtained via the sequential product of each state output
and their transition probabilities.
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