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ABSTRACT

A novel stereophonic noise reduction method is pro-
posed based upon a combination of cascaded subspace fil-
ters, with delay and advancing elements alternatively in-
serted between the adjacent cascading stages, and two-channel
adaptive signal enhancers. Simulation results based upon
real stereophonic speech contaminated by two correlated
noise components show that the proposed method gives im-
proved enhancement quality, as compared to conventional
nonlinear spectral subtraction approaches, in terms of both
segmental gain and cepstral distance performance indices.

1. INTRODUCTION

In the last few decades, noise reduction has been a topic
of great interest in speech enhancement. One of the classical
and most commonly used methods is based upon nonlinear
spectral subtraction (NSS) [1]. In NSS methods, however,
due to the block processing based approach, it is well known
that such methods introduce annoying artifacts, which are
often referred to as undesirable “musical tone”, in the en-
hanced speech. Moreover, in many cases, such methods
also remove some speech components in the spectra which
are fundamental to the intelligibility of the speech. This
is a particular problem at lower SNRs. The performance
is also quite dependent on the choice of many parameters,
such as, spectral subtraction floor, over-subtraction factors,
or over-subtraction corner frequency parameters. The opti-
mal choice of these parameters in practice is therefore very
difficult.

Recently, in the study of blind signal processing, one of
the most active potential application areas has been speech
separation and several methods for blind separation/ decon-
volution of speech have been developed [2] - [4]. These
methods work quite well when each sensor is located close
to each source. However, separation of the speech from
noise is still difficult when all the sensors are located close

Z
− l0

Z
− l0

2
x  (k)

11
x  (k)

−

+

−

+

^

1
s  (k)

2

^
s  (k)

ADF2

2
e  (k)

1
e  (k)

ADF1

y  (k)
2

1
y  (k)

Multi−stage

MSP

Fig. 1. Block diagram of the proposed two-channel noise
reduction system.

to one dominant source but far from the others, as in cock-
tail party situations. This sensor configuration is typically
employed in practice, for example, as in stereo conferenc-
ing systems; two microphones being placed in front of the
speaker at a reasonable distance. Moreover, the existing
blind separation/deconvolution methods quite often fail to
work where there are more sources than sensors. On the
other hand, although a number of subspace based methods
have also been developed for speech enhancement [5] - [8],
little attention has been paid to the extension to multichan-
nel outputs.

In this paper, we propose a novel two-channel signal
enhancement scheme using a combination of a multi-stage
subspace estimation method and a two-channel adaptive sig-
nal enhancement (ASE) approach in order to tackle the afore-
mentioned problems.

2. STEREOPHONIC NOISE REDUCTION

Fig. 1 illustrates the block diagram of the proposed two-
channel noise reduction system. In the proposed method, a
multi-stage moving subspace projection (M-MSP) in which
each MSP acts as a filter is used in order to extract the ref-
erence signals from the primary inputs for the two adaptive



signal enhancers. Moreover, between the adjacent stages,
both the delay and advancing elements are alternatively in-
serted across the two-channels. By using the cascaded ver-
sion of the MSP, it can be expected that the noise component
in the signal subspace is to a certain extent decreased stage-
by-stage, but some signal degradation may ensue. For the
actual enhancement, two adaptive signal enhancers are used
and the enhanced signal obtained from the M-MSP is used
as the reference signal to the adaptive filter for each chan-
nel. The principle of this approach is that the quality of the
outputs of the M-MSP will be improved by the adaptive fil-
ters.

In this paper, the following model representing a stereo-
phonic environment is considered as the two channel obser-
vation ��� �����

( �
	����� ):

��� ����� 	 ������� ��������� � ����� ��� ����� 	 ������� ��������� � �����  (1)

where ��� � ���
and ��� � ���

correspond respectively to the left
and right channel speech signals,

� � �����
and

� � �����
are the

additive noise components with zero-mean and are uncorre-
lated with the speech signals, and the constant ‘ � ’ controls
the input SNR. In (1), the number of sources can be seen to
be four; two stereophonic speech components and the two
noise sources, but the number of the sensors is still assumed
to be two ( ! 	"� ), as is representative of many stereo-
phonic teleconferencing systems.

Hence, this seems to be really problematic since “There
are more sources than sensors.”. However, in stereophonic
situations, the respective components � � �����

and
� � �����

( �#	��$� ) can be approximated by

��� ����� 	 %
&�(' � � ���*)������ � � ����� 	 % &�(' � � ���,+-�����  (2)

where % �.' / � ��� 	10 2 �.' / ��34� $2 �(' / � � � 5�6�6�5�2 �.' / ��798;:�< ' />= � �@? &
( �$@ACBD���� ) are the impulse response vectors of the acoustic
transfer functions between the signal/noise source and the
microphones with lengths

7E8;:�< ' � and
)F����� 	G0 � ����� �� ��� =� � 6�6�5�H�� � � = 7 8 ' � � � �@? & and

+-� ��� 	I0 �J�����  �J� � = � � �6�5�6 �J� � = 7 < ' � � � �,? & are respectively the speech and noise
source signal vectors. Therefore, it is considered that the
respective stereophonic components � � �����

/
� � �����

( �K	L��$� )
are generated from one speech/noise source using two (suf-
ficiently long) filters % �$' � / % �H' � and, in reality, the stereo-
phonic speech components � � � ���

are strongly correlated with
each other, while in certain situations we may consider that
the number of noise sources is also approximated to one
with some amount of cross-correlation between

� � � ���
and� � � ���

.

2.1. The Subspace Projection for Noise Reduction

The subspace projection of a given signal data matrix
contains information about the signal energy, the noise level,

and the number of sources. By using a subspace projection
, it is thus possible to divide approximately the observed
noisy data into the subspaces of the signal of interest and
the noise [10]. A summary of the noise reduction technique
using the subspace projection is given as follows:

Let M be the available data in the form of an
7CN ! ma-

trix MO	P0 Q9RS*QJT�6�6�5�H�QVU ?
, where the column vector QVW

( �
	X�4���6�6�5�H�! ) is written as Q
WY	Z0 � � ��34� [� � � � � 5�6�6�6[� � �(7 =� �,? & �.\
: transpose

�
. Then, the eigenvalue decomposition

(EVD) of matrix M for !^] 7
is given by

M_M & 	X`bac` &  (3)

where the matrix `d	P0 ef��[eg��6h6h5h6*e�i ? Bkj iml�i
is or-

thogonal such that ` & `n	"opi and aI	"q4�,�4r ��s �� s �4h6h5h6 s i � BXj iml�i
, with eigenvalues

s �ut s �vt h6h5h ts iwt 3
. The columns in ` are the eigenvectors of M_Mk& .

The eigenvalues in a contain some information about the
number of signals, signal energy, and the noise level. It is
well known that if the signal-to-noise ratio (SNR) is suffi-
ciently high (e.g., see [9]), the matrix M can be decomposed
as

M_M & 	Z0x` 8 ` < ?Yy a 8 zz a <_{ 0x` 8 ` < ? &  (4)

where a 8
contains the � largest eigenvalues associated with� source signals and a <

contains ( ! = � ) eigenvalues as-
sociated with the noise. It is considered that `
| contains� eigenvectors associated with the signal part, whereas ` <
contains ( ! = � ) eigenvectors associated with the noise.
The subspace spanned by the columns of ` 8

is thus re-
ferred to as the signal subspace, whereas that spanned by
the columns of ` <

corresponds to the noise subspace.
Then, the signal and noise subspace are mutually or-

thogonal and orthonormally projecting the observed noisy
data onto the signal subspace leads to noise reduction. The
data matrix after the noise reduction }w	�0 ~ � [~ � 6h5h6h6*~ i ? & ,
where ~ � 	�0 �4� ��34� *��� � � � 6h6h5h6*��� ��7 = � �@? & , is given by

}w	kM�` 8 `m&8 (5)

which describes the orthonormal projection onto the signal
space. This approach is quite beneficial to practical situa-
tions, since we do not need to assume/know in advance the
locations of the noise sources.

2.2. Multi-stage Moving Subspace Projection

Fig. 2 illustrates a block diagram for the � -stage MSP
with � -sample delay elements and � -sample advancers. As
in the figure, the observed signals � � � ���

are processed through
multiple stages of MSP. The concept of this multi-stage struc-
ture was motivated from the works of Douglas and Cichocki
[13], in which natural gradient [14] type algorithms are used
in cascading form for blind decorrelation/source separation.
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Fig. 2. Block diagram of the modified � -stage MSP with� -sample delay elements and � -sample advancers for stereo-
phonic noise reduction.

In the analytical work [13], it is reported that the improve-
ments in the convergence behaviors of previous decorre-
lation stages are compounded in subsequent decorrelation
stages. A similar improvement can be obtained using M-
MSP, since, in principle, MSP also performs decorrelation/
separation of signals [15].

Within the proposed scheme, note that since the MSP
acts as a filter, the proposed M-MSP can be viewed as an � -
cascaded MSP filter. To illustrate the difference between the
proposed M-MSP and the conventional frame-based opera-
tion (e.g., [10]), Fig. 3 is given. In the figure, Q�� /�� denotes
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a sequence of the ! -channel output vectors from the A -th
stage MSP operation, i.e., Q�� /�� �(3S� *Q�� /�� � � � *Q�� /�� � � � 6h5h6h (A 	��$� 6h5h6hH�� ), where Q � /�� ����� 	�0 � � /��� ����� [� � /��� ����� 6h5h6h5[� � /��i �����,?

(
� 	 3 5��$� 6h5h6h ).

Then, given the previous
7

past samples for each chan-
nel at time instance

�
( t 7

) and using (5), the input matrix
to the A -th stage MSP M � /�� �����

(
7 N ! ) can be written:

M � /�� � ��� 	 y�� M � /�� ��� = � � ` � /��8 � � = � � ` � /��8 ��� = � � &Q�� /
	p��� ����� { 
� 	 0 � �� 	g���*l���� o  	p� ?  ��7 = � Nm79�

(6)

where ` � /��8
denotes the signal subspace matrix obtained at

the A -th stage,

Q ��� � ����� 	 Q ����� M � /�� �(34� 	 y � �� 	p���*l�iQ�� /
	g��� �(34� { h
Note that in the above the first (

7 = � ) rows of M � /�� � ���
are obtained from the previous MSP operation, whereas the
last row is taken from the data obtained from the previous
stage of MSP. Then, at this point, as in Fig. 3, the new data
(i.e., the data from the previous stage) Q�� /
	p��� �����

remains
intact and the rest (

7 = � ) data vectors, i.e., those obtained
by the product � M � /�� �����

, will be replaced by the subse-
quent subspace projection operations at the A -th stage. It is
thus considered that this recursive operation is similar to the
concept of data-reusing [11] in which the input data at the
same data point is repeatedly used for, i.e., improving the
convergence rate in adaptive algorithms. Moreover, since
the input data used for the A -th stage MSP is different from
that at the A = � -th stage, it is expected that the subspace
spanned by ` 8

can contain less noise than that obtained at
the previous stage and that this approach still works when
the number of the sensors ! is small, as in ordinary stereo-
phonic situations.

In addition, we can intuitively justify the effectiveness
of using multi-stage MSP (M-MSP) as follows: for large
noise and very limited numbers of samples (this choice must,
of course, relate to the stationarity of the noise), a single
stage MSP (filter) may perform only rough or approximate
decomposition to both the signal and noise subspace. In
other words, we are not able to ideally decompose the noisy
sensor vector space into a signal subspace and its noise coun-
terpart with a single stage MSP. In the single stage, we
rather perform decomposition into a signal-plus-noise sub-
space and a noise subspace [8]. For this reason, applying
M-MSP gradually reduces the noise level.

In [7], the Hankel matrices are exploited within the sin-
gle channel SVD and a further noise reduction is achieved.
It is considered that one of the keys using Hankel structure
within the subspace analysis resides in the ‘data-shifting’,
which causes variations within the subspace estimation and
eventually helps the signal separation, provided that the shift-
ing is small enough not to introduce distortion. Thus, a
combined Hankel-like operation with the M-MSP filter can



be useful in the stereophonic situations, since with a suffi-
cient window length

7
the characteristics of the two chan-

nel signals may become similar to each other in the statis-
tical sense of block analysis. Exploiting this principle, the
M-MSP with both delay and advancing elements for stereo-
phonic noise reduction as in Fig. 2 is thus proposed.

Eventually, the outputs after the � -th stage MSP, � � �����
,

are considered to be less noisy than the respective inputs� � �����
and sufficient to be used for the input signal to the

signal enhancers.

2.3. Adaptive Signal Enhancement

After the extraction of each signal, adaptive signal en-
hancers (ASEs) are used to enhance the observed two-channel
signals. Since the respective input signals to the enhancer
are strongly correlated with the corresponding signals of in-
terest, the adaptive filter functions to recover the original
signal in each channel from the delayed version of the sig-
nal � � ��� =�� � � ( �
	��4�� ) using the observation � � �����

. In the
diagram in Fig. 1, the delay factor � � is given by

� � 	 7�� = ��  (7)

where
7��

is the length of each adaptive filter. The inser-
tion of the delay factor is necessary in order to shift the
enhanced signals in not only the positive but also the neg-
ative time direction by the adaptive filters. This scheme is
then somewhat related to direction of arrival (DOA) esti-
mation using adaptive filters [16]. However, in the context
of stereophonic noise reduction, the role of the adaptive fil-
ters is different from the DOA. Eventually, as in Fig. 1, the
enhanced signal ���� �����

is obtained simply from the filter out-
put.

In the M-MSP described earlier, the orthonormal pro-
jection of each observation � � � ���

onto the estimated signal
subspace by the M-MSP leads to reduction of the noise in
each channel. However, since the projection is essentially
performed using only a single orthonormal vector which
corresponds to the speech source, this may cause the distor-
tion of the stereophonic image in the speech reference sig-
nals � � �����

and � � �����
. In other words, the MSP is performed

to recover a single speech source from the two observations��� �����
.

In the proposed method, the adaptive signal enhancers
are thus employed in order to compensate for the stereo-
phonic image. Since, as in Fig. 1, the error signals � � � ���
( � 	"��$� ) contain the information about the stereophonic
image (because the observations � � �����

are true stereophonic
signals), the adaptive filters (with sufficient filter lengths)
essentially adjust the delay and the amplitude of the signal
in each channel, both of which are of fundamental to re-
cover the stereophonic sound, and therefore are considered
to compensate for the stereophonic image in each channel.

3. SIMULATION STUDY

In the simulation, three stereophonically recorded speech
datasets were used for the speech components ��� �����

. The
speech was a sentence spoken in English, “Pleasant zoos
are rarely reached by efficient transportation”. Each ut-
terance was recorded by one female and two male native
speakers in a quiet room, sampled at 48kHz. Each untrained
speaker was asked not to move their head from the centre of
the two microphones (the distance between the two mic. is
50cm). The speech data were then normalised to have unity
variance.

In order to validate the proposed scheme, we considered
the case where the two noise components

� � �����
( � 	 ��$� )

are correlated by %J�.' � �����
, as in the stereophonic setup in (2).

The noise source signal
�J� ���

was then modeled by�J����� 	��	� � � ��
� ��� ��� �����
(8)

where � �����
was assumed to be white. In the simulation, �

was chosen to be 100(Hz), which yields a component like
a car-engine noise and with this setting it is considered that
some fundamental components of voiced speech are signif-
icantly contaminated. The setup above can hence be seen
as a representation of an oscillatory random noise source.
For the correlated noise components (as given by (2)), the
impulse responses % �H' � �����

were assumed to be the models
based upon zero-mean Gaussian random variables modu-
lated by exponentially decaying envelopes, which represent
the room impulse responses. Then, the coefficients 2 �H' � � A �
(A 	 3 6�46�5�6�  7 < ' � = � ) are given by

2 �H' � � A � 	��5�4� � = 3 h ��A � � �� ' � � A �  � A 	 3 5��6�5�6�H 7 < ' � = � �  (9)

where
� � ' � � A �

are given as two independent zero-mean Gaus-
sian random variables. In the simulation, the lengths of%V�6' � � ���

were respectively truncated to � 3 .

3.1. Performance Measurements

For the evaluation of the enhancement quality, the ob-
jective measurement in terms of both the segmental gain
in SNR and averaged cepstral distance was also considered
(see, e.g. [17]), apart from the informal listening tests. The
segmental gain in SNR (dB) is defined as

� � q�� � 	 �! �p� i� ���f�
����/��f� � 3 � ��r � � � + � � ���5) � = �) � � ��  (10)

where ! 	 � (stereophonic),
) � 	 0 ��� ����� ���� � � � � � 5�6�5�6� � � � � � � = � �@? & , �) � 	�0��� � ����� ��� � ��� � � � 6�5�6�5��� � ��� � � =� �,? & ,

+ � 	Z0 � � �����  � � ����� � � 6�6�5�H � � ���-� � � = � �@? & , (
� 	� A = � � � �  � A = � � � � � ��6�5�6�H@AS� � = ��gA 	 �����6h h h (� � )

are respectively the noise-clean speech, enhanced speech,
and the noise signal vector, and where � ��� 	 �!�!" � is the
number of samples in each frame and � � is the number of



frames. The averaged cepstral distance is given by

q���� � 	 �! i� ���f� ����6' �
����� ��/�� �

�
	�
� �f� � �H�(' � � A � = � � �(' � � A �[� �

(11)

where � �(' � � A �
and � � �(' � � A �

are the cepstral coefficients corre-
sponding to the clean and the enhanced signal at the left/right
channel, respectively. The parameter  � 	�� � is the order
of the model, and ���H' � ( � 	 �4�� ) is the number of frames
where speech is present. The determination of speech pres-
ence was achieved by manual inspection of the clean speech
signals.

3.2. Simulation Results

In Fig. 4, (a) shows the part of the noise clean speech
data (sampled at 48kHz, using Speech Sample No. 2, note
that the sample number for display is limited from sam-
ple no. 83001 to 93000 for a clear presentation of the re-
sults), (b) the noisy speech (assuming the input SNR = � dB),
(c) the enhanced speech by dual-mono nonlinear spectral
subtraction (NSS) algorithm, (d) the enhanced speech by
4MSP with delay and advancers (� 	 � ) + Dual (i.e., two-
channel) ASE (DASE), respectively. Fig. 5 shows a com-
parison of the segmental gain and the cepstral distance. The
results shown in the figure were obtained by averaging over
the three speech samples. In the figure, the performance
of the five different noise reduction methods, i.e., 1) NSS,
2) 1MSP (i.e., a single-stage MSP) + DASE, 3) 4MSP +
DASE, 4MSP with delay and advancers + DASE (4MSP +
DA + DASE) with 4) �b	 � and 5) �u	 " , is compared. In
Fig. 5 (a), whilst the performance with NSS is better than
the other four at lower SNRs, with 4MSP + DA + DASE
(p=1), performance improvement of around 1-2dB is ob-
served (at input SNR from -2 to 5dB) in comparison with
other MSP based methods. In contrast, as in Fig. 5 (b), at
lower SNRs, the case with 4MSP + DA + DASE (p=1) is
superior to the other four methods. This coincided with the
informal listening tests. In the listening tests, it was also
confirmed that to a great extent the stereophonic image can
be recovered by the proposed method.

4. CONCLUSION

In this paper, a novel two-channel noise reduction method
has been proposed as a combination of a multi-stage MSP
and adaptive signal enhancement technique. In the proposed
method, the M-MSP is used for the extraction of the signal
of interest to the adaptive filter in each channel, and actual
signal enhancement is performed by the adaptive approach.
The proposed methods have been applied to stereophonic
noise reduction, where the number of sensors is two. In the
simulation study, it has been shown that the performance
with the proposed methods is superior to the conventional
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(a) Noise clean
speech
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(b) Noisy data
(SNR= � dB)
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(c) NSS
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(d) 4MSP + DA +
DASE

Fig. 4. Simulation results (speech sample No. 2) - the case
where two additive correlated noise components generated
from an oscillatory noise source are present.

NSS approach, where two correlated noise components gen-
erated from an oscillatory noise source are present in the re-
spective channels. It has also been confirmed that the adap-
tive filters can compensate for the stereophonic image.
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Fig. 5. Performance comparison - the case with two corre-
lated noise components generated from an oscillatory noise
source.


