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ABSTRACT
In this paper, an attempt is made to classify the

EEG signals of letter imagery tasks using a combined
independent component analysis and probabilistic neu-
ral network. The role of the principal/independent com-
ponent analysis is to mitigate the effect of EOG arti-
facts within each single-trial EEG pattern. Experimen-
tal results show an overall performance improvement
of around

���������
in terms of the pattern classification

accuracy, in comparison with the LPC spectral analy-
sis which is commonly employed in speech recogni-
tion tasks.

1. INTRODUCTION

In the last decade, a challenging research direc-
tion has come out to explore another communication
mode between humans and computers, so called the
brain computer interface (BCI), amongst an increasing
number of laboratories. The objective of BCI is then
to classify the internal states of the human brain mea-
sured by means of non-invasive instrumentations such
as EEG, MEG, fMRI, or PET devices. This direction
is quite significant for the development of new prosthe-
sis devices, which will eventually lead to the benefit of
the people with disability. One of the leading groups in
BCI, Pfurtsheller, et. al [1] or the group by Wolpaw, et.
al [2], exploits the frequency-domain features such as	

or 
 rhythms in sensorimotor cortex area for the pur-
pose of, e.g., cursor movement or selection of letters

or words on the computer monitor. However, these ap-
proach require the subjects to undergo a special train-
ing scheme for the stable generation of the two EEG
rhythms before its practical use. Other studies focused
upon the utility of slow cortical [3] potentials, or P300
potentials [4] in which they claim there is no need for
such training but it appears that the approach still is
under development for the practical utility.

In this paper, we attempt to enhance the single trial
EEG patterns of letter imagery tasks using the compo-
nents obtained by principal component analysis (PCA)
followed by independent component analysis (ICA) for
the further reduction of EOG artifacts [5]. We then
apply the probabilistic neural network [6] for the pat-
tern classification of the feature vectors obtained by the
PCA+ICA data preprocessing with LPC spectral anal-
ysis.

2. PATTERN CLASSIFICATION OF EEG
SIGNALS

2.1. PCA+ICA for EOG Artifacts Reduction

Let us consider the situation where only � EEG
channels out of the ������ ( ��� ) are available. The
task is then to reduce the EOG artifacts (e.g., the my-
oelectric signals pertaining to eyeball movement) and
improve the accuracy of the classification rate, by ap-
plying a combined PCA and ICA pre-processing to
the � channels. Normally, the standard EEG record-



ing systems have two EOG channels, i.e., HEOG and
VEOG (the horizontal and vertical EOG, respectively),
which can be exploited to obtain the reference signals
for the EOG artifacts reduction.

Let � denote an � ��� �����	�
matrix in which the

first two rows contain the two EOG signals and rest the
� EEG signals (where

�
denotes the length of a sin-

gle trial). We assume that each row in � is zero-mean.
Then, the covariance matrix of � is calculated as
�� ���  ����� � (1)

Suppose that the eigenvalue decomposition of the co-
variance matrix is obtained, i.e.,
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(2)

where
� �#" � �$"&%'%'%(" ����� � , it is considered that, if

we multiply the two EOG channels
�

by a scaling con-
stant ) ( � �  ) before applying the ICA, they will ap-
pear on the first two principal components. On the as-
sumption that the first two components correspond to
the EOG signals spread over the � EEG channels, we
discard the first two principal components, unlike the
ordinary utility of PCA in which the components cor-
responding to the smaller eigenvalues are discarded.

We define a � � � �*� ���
matrix + by

+ �
����
�

�, -/.
. . . �0 -/1(243

� ���
!65� (3)

where 5� denotes the � � � �7� ���
matrix which con-

sists of the last � rows of
�

. Then, the EEG signals
after the reduction of the EOG artifacts are obtained
by projecting the raw data � onto the last � principal
components,

5� � +8� �
(4)

Next, the EEG data 5� is uncorrelated, that is,�9�  5� 5� � �;:�<
(5)=

Here, we assume that the amount of EEG components con-
taminated in the two EOG reference channels is negligible.

which is moderately but not sufficiently separated. We
then expect that the classification accuracy will be fur-
ther improved by separating the uncorrelated compo-
nents to independent ones before the post-processing
(i.e., the stages for LPC and PNN described next) and
thus apply ICA to the obtained EEG data 5> . In this pa-
per, we simply use the natural gradient algorithm [7]:? �A@B�  � � ? �A@ � �DC ? �A@ � < (6)C ? �A@ � � E �A@ � �AF �9G �IHJ�A@ �K� H � �A@ �K� ? �A@ � <

(7)

where
E �A@ � is a learning constant, the activation func-

tion is a hyperbolic tangent function, i.e.,
G �ML � �ONQPSRUT �ML �

,
and

HJ�A@ � ��? �A@ �WV �A@ � (8)

where
V �A@ � denotes the @ -th column of 5� . Using the

separating matrix
?

, the pre-processed signals are fi-
nally given asX ��? 5� ��? +8� �

(9)

2.2. LPC Spectral Analysis

In [8], it is reported that multivariate autoregres-
sive (AR) parameters are effective to represent the fea-
tures of the EEG patterns for mental imagery tasks.
In this paper, rather than the direct exploitation of AR
parameters, we use the LPC spectral analysis [9] with
a sliding window for the feature extraction, which is
well-known technique for speech applications. This
strategy is based upon the analytical fact that the AR
parameters vary dramatically even between the respec-
tive EEG patterns of the same imagery task and thus
the direct use of the AR coefficients is considered not
suitable for our imagery tasks. This situation is similar
to the case of the speech recognition tasks where the
speech signals are highly non-stationary.

2.3. The Probabilistic Neural Network

The PNN [6] is a family of radial basis function
neural networks (RBF-NNs) [10] and can be seen as
the reformulation of kernel discriminant analysis [11]
in the artificial neural network context. Recently, the
utility of PNN/ generalised regression neural networks
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Fig. 1. Illustration of the topological equivalence be-
tween a conventional PNN (upper) and that realised
modular form (lower).

(GRNNs) has been increased especially in pattern clas-
sification, due to its straightforward, quick, and flexi-
ble configuration (i.e., network growing/shrinking) prop-
erty (e.g., see [12]) and robustness, in comparison with
e.g., the commonly used multilayered perceptron neu-
ral networks [10] trained by a backpropagation type
algorithm [13]. Moreover, in [14] it is reported that a
PNN even exhibits a capability in accommodating new
classes.

In Fig. 1, each input neuron ��� (
� �  < � < %'%'% < ��� )

corresponds to the element in the input vector
V �� � � < � � < %'%'% < � ���	� � , 
�� ( �  < � < %'%'% < ��� ) is the  -th

RBF (note that ��� is variable), � %'%'% � �� denotes the

squared
� � norm, and the output neuron ��� ( @ �  < � ,%'%'% < ��� ) is given as

��� � �
����
��� ��� ��� � 
��

<
(10)

where
� �"! ��#� � � ! ����$� � � �%� � 
&� , '�� �� � �%� � < � ��� � < � � � < � �%� ��#(� � , and


�� � ) ��* � � � VO� L � � ��+ �� � <
(11)

where L � is called the centroid vector, + � is the
radius, and '�� denotes the weight vector between the -th RBF and the output neurons. As in the upper part
in Fig. 1, the structure of a PNN is similar to the well-
known multilayered perceptron neural network (MLP-
NN) except that RBFs are used in the hidden layer and
linear functions in the output layer. In Fig. 1, when the
target vector ,S� V �

corresponding to the input pattern
vector

V
is given as

, ( V )
� � � � < � � < � � � < � ��# � <
� � �.-/0

/1
 if

V
belongs to the class

corresponding to �2�3
otherwise

(12)

which assigns the weight vector between the  -th RBF
and the output neurons, i.e., ' � � ,S� V �

, the entire net-
work eventually becomes topologically equivalent to
the one with a decision unit (followed by the ‘winner-
takes-all’ strategy) and �4� number of sub-nets as in
the lower part of the figure [12]. Then, each SubNet�

represents the pattern space of Class
�

spanned by
the RBFs. In summary, the network configuration by
means of a PNN is simply done as follows:

Network Growing: Set L � � V
and fix + � , then add

the term � � � 
&� in (10). The target vector ,S� V �
is

used as a class ‘label’ indicating the subnetwork
number to which the RBF belongs.

Network Shrinking: Delete the term, � � � 
&� , from (10).

As in the above, it is considered that, in hardware
implementation, the network growing (learning) can
be straightforwardly performed. It is well-known that
the generalisation performance of RBF-NN families



such as PNNs is robust, while conventional neural net-
works such as multilayered perceptron neural networks
(MLP-NNs) with the backpropagation algorithm [13]
require iterative and (quite often) long training when-
ever the network configuration is changed and is sub-
ject to remaining at local minima [10].

3. EXPERIMENT

In the experiment, four (two female/male) external
subjects participated to perform the mental imagery
tasks and three out of four recorded data sets were
found to be usable for the classification tasks. The
EEG data were recorded in a dark and both acous-
tically and electronically shielded room using NEU-
ROSCAN ESI-64 channel system with STIM software
package. In the shielding room, each subject sat on a
specially designed seat and faced to the display screen
at a distance of 280(cm).

3.1. Experimental Design

The objective of the EEG experiment is to classify
the two internal brain states between auditory and vi-
sual stimulus driven imagery tasks. The experiment
thus involved two sessions; one for auditory and the
other for visual stimulus driven imagery tasks. In each
session, the subjects were asked to start performing
the mental imagery of Japanese letter /a/, without any
specific control on the imagery (namely, the modality-
independent imagery), immediately after the presenta-
tion of auditory/visual stimulus. For the auditory stim-
ulus, the vowel /a/ uttered by a native female speaker
was presented. In contrast, a letter image of /a/ (in
Japanese hiragana character) was displayed in the mid-
dle of the screen for the visual stimulus. The subjects
were instructed to press the tap button of the response
pad once, right after performing each mental imagery
task. The trial (i.e., the stimulus presentation followed
by the imagery task) was repeated for 45(40) times for
one session. Each session then lasted about 5 minutes
with a short interval, which was considered to be a rea-
sonable period of time for the subjects to maintain their
concentration on performing the imagery tasks without
feeling an excessive amount of stress.

3.2. Data Analysis

The raw EEG patterns of the six(five
�
) [8] + two-

channel EOG positions, i.e., C3, C4, O1, O2, P3, P4,
HEOG, and VEOG, were firstly preprocessed by the
PCA+ICA. These eight electrode positions correspond
to those of the international standard 10-20 system,
which moderately covers from the parietal to occipi-
tal area of brain. To better reduce the amount of the
EOG components, both the amplitudes of HEOG and
VEOG were arbitrarily scaled up to 100 times larger
than the original. By applying this setup, it was ob-
served that the EOG artifacts appeared in the top two
channels after the PCA and ICA were satisfactorily re-
moved from the six positions.

The PNN classifier was then constructed (trained)
using the feature vector which consists of the normalised
LPC spectra of the six-channel PCA+ICA preprocessed
signals obtained from the first 30(25) trials, (i.e., in the
experiments, each feature vector was simply allocated
to an RBF in the network) and the remaining 15 pat-
terns were used for testing. The order of the AR model
was empirically determined to  3 , whereas the number
of the analysis frames for LPC was set to �� .

For comparison, another PCA classifier and the test-
ing data set were prepared, with directly applying the
conventional LPC spectral analysis to the raw EEG
signals obtained from the six(five

�
) positions C3, C4,

O1, O2, P3, and P4 [8].
Figs. 2 and 3 respectively show an example of

the results obtained by PCA and those of PCA fol-
lowed by ICA. As shown in Fig. 2, it was confirmed
that the EOG activity appeared in the top two PCA
components, PCA1 and PCA2, for most of the trials,
whilst those are still remaining in other components,
i.e., PCA3, PCA4, and PCA6. However, other unseen
components in the raw data are emerged in other PCA
components, e.g., PCA4 and PCA5. In contrast, in
Fig. 3, it can be seen that the separation of the com-
ponents is slightly improved. This separation is partic-
ularly eminent for ICA1 and ICA2. In summary, we
confirmed that the amount of the EOG artifacts can be
effectively reduced by the hybrid scheme of PCA and
ICA.3

For some data, only five out of the six electrode positions were
available, due to the bad contact between the scalp and electrodes
which resulted in high impedance channels.
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Fig. 2. Data Analysis by PCA.
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Fig. 3. Data Analysis by PCA followed by ICA.

3.3. Classification Results

Table 1 summarises the classification results of the
above two methods; one for directly applying the LPC
spectral analysis and the other for the analysis after the
EOG artifacts reduction. As shown, the performance
improvement of around  @ �BA�3 �

in terms of classifi-
cation rate was obtained for all the cases.

Classification performance
without with EOG

EOG reduction
reduction by PCA+ICA

Subject 1 56.7
�

76.7
�

Subject 2 60.0
�

76.7
�

Subject 3 50.0
�

80.0
�

Average 55.6
�

77.8
�

Table 1. Comparison of the classification perfor-
mance.

Sample No
Imagery with Imagery with

auditory stimulus visual stimulus
Avg. Min. Max. Avg. Min. Max.

Subject 1 241 150 458 744 578 1081
Subject 2 1869 1267 2316 2096 1575 2563
Subject 3 593 264 1019 5732 901 14787

Table 2. Comparison of the analysis window lengths
between the subjects.

3.4. Discussion

In the experimental design, we did not control the
duration for imagery tasks, and thus the sample num-
ber of trials (i.e., the analysis window length; the win-
dow length was varied according to both the timing of
the subject’s button pressing, which gave the end point
of the window, and the starting point, which, for the
auditory stimulus, is right after the presentation was
finished, and in contrast, for the visual stimulus, was
identical to the stimulus presentation.) differs from
each other. Then, one of the concerns may be that the
classification tasks were carried out by not the differ-
ence in the EEG components but merely the analysis
window length. However, from the comparison of Ta-
ble 1 with Table 2, it is justified that the classification
rate is independent from this factor.

4. CONCLUSION

In this paper, pattern classification of single-trial
EEG signals obtained for mental imagery tasks has



been performed. Although it has been observed the
consistent performance improvement using the PCA+ICA
approach, compared to the conventional LPC spectral
analysis, for the three out of four data, the classifica-
tion results obtained in this work are considered to be
preliminary and a number of issues are still remained
to be open. For instance, we still are not convinced
if the classification results were really obtained from
the consequence of distinguishing the mental imagery
tasks. We thus need a thorough neurophysiological/
cognitive-scientific investigation of the results so ob-
tained as well as the data analysis, which is beyond the
scope of this paper, and, as the first step, plan to con-
tinue the EEG experiments in a similar manner to that
presented in this paper, but with a more elaborate de-
sign by giving constraints to the subjects, e.g., specific
imagery tasks depending upon the stimuli given or in-
troducing fixed duration of time for imagery tasks. In
parallel to this, future work also includes the extension
to biofeedback-type mental imagery tasks by exploit-
ing the quick and flexibly reconfiguration property of
the PNN classifiers.
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