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HeuristicPatternCorrectionSchemeUsing
Adaptively TrainedGeneralizedRegressionNeural

Networks
TetsuyaHoya andJonathonA. Chambers, Senior Member, IEEE

Abstract—In many pattern classification problems, an
intelligent neural system is required which can learn the newly en-
countered but misclassified patterns incrementally, while keeping
a good classification performance over the past patterns stored in
the network. In this paper, an heuristic pattern correction scheme
is proposed using adaptively trained generalized regression neural
networks (GRNNs). The scheme is based upon both network
growing and dual-stage shrinking mechanisms. In the network
growing phase, a subset of the misclassified patterns in each
incoming data set is iteratively added into the network until all
the patterns in the incoming data set are classified correctly. Then,
the redundancy in the growing phase is removed in the dual-stage
network shrinking. Both long- and short-term memory models
are considered in the network shrinking, which are motivated
from biological study of the brain. The learning capability of the
proposed scheme is investigated through extensive simulation
studies.

Index Terms—Generalized regression neural networks
(GRNNs), incremental learning, pattern classification, pattern
correction.

I. INTRODUCTION

NEURAL networks have beensuccessfullyusedin many
patternclassificationtasks[1]. Incrementaltraining is an

efficient learningmechanismfor neuralnetworksthataddsnew
knowledgewithout reinitializing theentirenetwork. Thedevel-
opmentof promisingincrementallearningmethodshasthere-
forebeenanissuewith greatinterestin thestudyof neuralnet-
works [2]–[10].

In the last decade,many successfulapplicationsusing the
family of radial basis function neural networks (RBF-NNs)
[11], [12] for thedevelopmentof incrementaltrainingsystems
have beenreported[2]–[6], [10]. In [2], incrementaltrainingis
achieved by addingRBFsinto the network andthenadjusting
their shapeparameters.In contrast,in [3] anew RBF is created
asamixtureof Gaussiandistributionsandthis learningmethod
is appliedto multilinguistic handwrittencharacterrecognition.
In recentwork [10], a differentincrementallearningtechnique
was proposed,in which new patternsare included with a

ManuscriptreceivedAugust10,1999;revisedMarch30,2000andJuly 10,
2000.

T. Hoya is with the Laboratory for AdvancedBrain Signal Processing,
BSI Riken, Wakoh-City, Saitama 351-0198 Japan (e-mail: hoya@bsp.
brain.riken.go.jp).

J.A. Chamberswaswith theCommunicationsandSignalProcessingGroup,
Departmentof ElectricalandElectronicEngineering,ImperialCollegeof Sci-
ence,TechnologyandMedicine,Universityof London,SW72BT U.K. He is
now with theDepartmentof ElectronicandElectricalEngineering,University
of Bath,BathBA2 7AY, U.K. (e-mail: j.a.chamgers@bath.ac.uk).

PublisherItem Identifier S 1045-9227(01)00753-6.

relearningof the interferedpatternsretrieved from pastinput
patternsstoredin thenetwork.

Probabilisticneuralnetworks (PNNs) [13] and generalized
regressionneuralnetworks (GRNNs) [14] are the paradigms
of RBF-NNs and sharea specialproperty, namely that they
do not require iterative training; the weight vector between
theRBFsandtheoutputunit canbe fixedasthe targetvector.
This attractive propertyis particularlyuseful in online useof
thepatternclassifier, asincrementaloperationmaybequickly
achieved.Therefore,for applicationto onlinepatterncorrection
of the misclassified patterns,the use of these networks is
suitablesince,in practice,the sizeof the incomingdatasetis
normallyvery large.

In this paper, an heuristic online batch patterncorrection
schemeis proposedbasedupon a GRNN with both network
growing anddual-stageshrinkingmechanisms.

In the network growing phase,a subsetof the misclassified
patternsin the incomingdatasetavailableat cycle is added
into thenetwork until thereis no classificationerrorwithin the
incomingdataset.Then,thegrown numberof centroidsis re-
ducedin thedual-stageshrinkingphase.In theshrinkingmech-
anism,a new conceptof both long andshort-termcentroidsis
introduced.Moreover, the short-termcentroidsetsform a lay-
eredshape,representingamorehierarchicalmemorystructure.

Theproposedscheme,unlike theParzenclassifier-basedap-
proachesin [18], [19], takesan instance-based approachwith
the aid of an hierarchicaldatapartitioningmechanism,which
eliminatestheneedfor statisticaldensityapproximationandits
associatedconsiderablemathematicalcomplexity.

In the next section,the heuristicpatterncorrectionscheme
usingaGRNNisdescribed.Thenetworkgrowingandshrinking
mechanismsare describedin detail in Sections III and IV.
SectionV is devotedto thesimulationstudiesof theproposed
schemeusingthreedifferentdatasetsfor patternclassification
tasksfrom differentdomainsandthelearningcapabilityof the
proposedschemeis evaluatedthroughextensive experimental
results.

II. THE HEURISTIC PATTERN CORRECTIONSCHEME

The proposedheuristicpatterncorrectionschemeis based
uponadualnetwork reconfigurationprocess.Thefirst stagein-
volvesnetwork growing, in which a subsetof themisclassified
patternsin theincomingdatasetatcycle is selectedandadded
into thenetwork. In thesecondstage,thenetwork is reconfig-
uredby a dual-stagenetwork shrinkingmechanism.

1045–9227/01$10.00© 2001IEEE
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Fig. 1. Illustrationof topologicalequivalencebetweentheML-GRNN with � Hiddenand � outputunitsandtheassemblyof the � distinctsubnets.

Accordingto biologicalstudy[21], memoryin thebraincan
be divided into two different types,i.e., long- andshort-term
memory, dependingon the retentiontime. In [21] and[11], it
is also highlightedthat long-termmemoryrepresentsknowl-
edgestoredin the brain for a long time or permanently, while
short-termmemoryis acompilationof knowledgerepresenting
the“current” stateof theenvironment.

In the proposedpatterncorrectionscheme,the conceptof
both long- andshort-termmemorymodelsare,therefore,con-
sideredandrealizedin termsof leakagein the informationin
thenetwork representedby thecentroids.

Theskeletonof theschemeis describedasfollows.
Skeleton of the Pattern Correction Scheme:

Step1) Initial Setup: Configure the network with a setof
long-term centroids from the
training set.Setcycle andthe short-termcen-
troid setcount .

Step2) Network Growing: Selecta subsetof themisclassified
patternsby testingtheincomingpatterndatasetavail-
ableat cycle . Then,performnetwork growing until
thereis no classificationerror. This providesa set
of short-termcentroidsfromthemisclassifiedpat-
terns.

Step3) Network Shrinking:

1) Long-Term Memory Update: If thecycleisamul-
tiple of (i.e., mod ), or whenthetotal
numberof thecentroidsin thenetwork

where (1)

reaches/exceedsa given threshold ,
shrink the total numberof centroidsin the net-
work by employing a data-pruningmethodand
obtain new long-term centroids.Resetthe
setcount .

2) Short-Term Memory Leakage (Memory Forget-
ting): Otherwise,shrink only the sizesof the
short-termcentroidsets ( ).
Set .

Step4) Set , thenreturnto Step2).

In Step 2 above, the short-term centroid sets
( ) thus form a layeredshape,representinga
hierarchicalmemorystructure.This partitioning basishasan
advantagefor giving a clearrepresentationof thedatastoredat
eachcorrectioncycle and,at the network shrinkingphase,the
removal of theredundancy (i.e., theleastcontributingcentroids
describedlater) in the short-termmemory can be efficiently
done.

III. THE NETWORK GROWING MECHANISM

Thenetwork growing in theproposedschemeconsistsof ex-
pandingthe currentnetwork suchthat the grown network can
correctlyclassifyall the patternsin the currentlyavailablein-
comingdataset.

Todothisonline,1 weexploit thespecialpropertyof GRNNs,
namely, that,for anewly addedRBF, theweightvectorbetween
thehiddenlayerandtheoutputcanbefixedto thetargetvector.

A. Network Setting for Pattern Correction

For theproposedpatterncorrectionscheme,afully connected
multilayeredGRNN (ML-GRNN) is used,which has input
neurons, RBFs,and outputneurons.As illustratedin the
left partof Fig. 1, thestructureof theML-GRNN is similar to
a well-known multilayeredperceptronneuralnetwork [11] ex-
ceptRBFsareusedin thehiddenlayerandlinear functionsin
theoutputlayer. In the figure, denotethe
elementsin the input vector , (where
thenumberof theRBFs variesduringthenetwork reconfig-
uration)for theRBF aregivenby

(2)

where is thecentroidvector, is the radius, is the
squaredEuclideannorm,and denotethe
outputcorrespondingto Class .

1Strictly speaking,the useof the term online in the proposedschememay
notbeappropriatesincetheincrementaloperationwill notbedoneonapattern
by patternbasis.Here,theauthorsjust intendto emphasizeanonlineuseof the
proposedscheme.
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Thetargetvectorfor Pattern is givenasavectorof indicator
functions

if pattern belongsto theclass(digit)

otherwise.

(3)

With thesettingabove, thetopologyof theML-GRNN with
outputunits canbe seenasa setof subnetswith a de-

cision unit as illustratedin the right part of Fig. 1, sincethe
weighthaving thevaluezerocanberemovedfrom thenetwork.
Then,eachsubnetis viewedasacollectionof RBFswhichrep-
resentstheentirepatternspacefor a singleclass.With thenet-
work ontheright, thefinal decisionis thereforemadefollowing
the“winner-takes-all” strategy.

B. Selection of the Misclassified Patterns

To performtheincrementaloperationonline,theselectionof
themisclassified patternsto beaddedmustbedonequickly. In
this paper, the selectionis suchthat the misclassified pattern
which yields a minimum activation at the outputneuroncor-
respondingto the correctclassnumber. This selectionis rea-
sonablesincethatpattern(or thenewly addedcentroidvector)
will reinforcethe “rather weak” area-covering of the distribu-
tion. However, it is necessaryto considerthecasein which the
newly addedpatternmayjustbeanoisyinstance.In thispaper,
suchan instancewould be deletedin the dual-stageshrinking
stage.

In commonly encounteredpatternclassification problems,
the numberof classes is normally known a priori. For
instance, for the pattern data sets of the digit
voice/characterrecognitiontasks,correspondingto the digits
from /ZERO/ to /NINE/. This knowledge is particularly im-
portant to grow the network so that the overall classification
performancefor eachclassshouldbe improvedevenly. There-
fore, the maximumnumberof RBFsaddedin onecorrection
countmustbefixedto thenumberof classes.

In the following, a summaryof the operationto selectthe
misclassified patternsis given.

1) Selection of the Misclassified Patterns:

Step1) Set .
Step2) For to , do thefollowing.

If thereis no misclassification for Class , skip.
Otherwise,select the misclassified patternwith a
minimumactivationat theoutputneuronfor Class
amongall thepatternsin Class , thenset .

Finally, the patterncorrectionis performedas the network
growing givenbelow.

2) Network Growing Mechanism:

Step1) Settheiterationcountfor thecorrection, .
Step2) Testtheperformanceof theGRNN with thecurrent

stateusingall the patternsin the incomingdataset
availableat cycle .

Step3) Collectall themisclassifiedpatternsin theincoming
dataset.Thenchoosea subsetof the misclassified
patternsaccordingto the selectionoperationgiven

above, and add a total of selectedpatternsinto
theGRNN. For eachnewly addedRBF, theweight
vectorbetweenthenew RBFandtheoutputneurons
is fixed identical to the target vector of the corre-
spondingmisclassified pattern.

Step4) Recalculateandfix theradii valuesof thecentroids
accordingto (4).

Step5) Test again the performanceof the refined GRNN
with all thepatternsin theincomingdataset.

Step6) If thereis nomisclassification,terminate.Otherwise
, andreturnto Step2).

In Step4) above,theradii valuesof theRBFsshouldalsobe
updatedin orderto avoid theoverlappingareascoveredby the
centroids.The way in which the radii valuesarereadjustedis
describednext.

C. Radii Setting of the GRNN Classifier

Thesettingof radii valuesis asignificantfactorfor thedesign
of RBF-NNsandsuchdeterminationis still anopenissue[1],
[11]. In thepreliminarysimulationstudies,we alsohave inves-
tigatedthe individual settingof radii valuesusingone-nearest
neighbor[22], however, the performanceusingthis technique
didnotyieldbetterresultsthantheradii settingwith fixedvalues
[20]. In thispaper, fixedradii valuesfor therespectiveRBFsare
thereforeusedandsetidenticalaccordingto thefollowing mod-
if ied radii settingfoundin [11]:

(4)

where
maximum Euclideandistancebetweenthe centroid
vectors;
numberof RBF’s;
numberof unitsin theoutputlayerof theML-GRNN.

In this paper, the radii valuesare updatedduring both the
network growing andshrinkingphaseaccordingto [4].

IV. THE NETWORK SHRINKING MECHANISM

In thenetworkshrinkingmechanism,thenumberof centroids
in the network is reduced.As mentionedearlier, this mecha-
nismmodelsa functionof memorylearningin theactualbrain;
newly arrivedinformationin thebrainis processedthroughtwo
different typesof memory, i.e., long- andshort-termmemory.
In thecontext of neuralnetworks,this processis consideredto
“compress” the datastoredin the network or, in otherwords,
remove redundancy in thenodes.

By exploiting this concept,the following assumptionsare
madein this paper:

Assumption 1: The leakagein the short-termmemory is
morethanthat in thelong-termmemory.

Assumption 2: The long-termmemoryis updatedperiodi-
cally (asin theskeletonof theonlinelearningschemedescribed
previously, theperiodis determinedby thevalue ).

A. Leakage in Short-Term Memory

For the leakageof the short-termmemory, ( denotes
“short term”) least contributing centroidsare removed from
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eachshort-termcentroid set ( mod )
after the network growing. The removal is basedupon the
measurementquantified by the contribution of the centroid
(CC).

For anRBF

(5)

where
(

)
patternvectorsin the incoming dataset
which belongto Class ;
centroidvectorof theRBF, ;
radiusof theRBF.

Note that, for eachset,the leastcontributing centroidsare
searchedacrossall theclasses.

The leakagein the short-termmemorycanthenbe summa-
rized in the following.

Short-Term Memory Leakage (Memory Forgetting): From
eachshort-termcentroid set ( mod ),
remove leastcontributingcentroids.Thenumberof thetotal
centroids after theremoval is definedas

(6)

wherezerogivesa floor (i.e.,no removablecentroids).

B. Long-Term Memory Update

In contrast to the leakagein the short-termmemory, all
the centroidsin the network are updatedfor the long-term
memory. This updatewill occureither after a specific period
(i.e., at a cycle where is a multiple of ) or the total number
of the centroids reaches/exceedsthe maximumnumber

.2 For theupdate,a data-pruningmethodis used.
The data-pruningmethod(usedin Step 3 of [Skeleton of

the PatternCorrectionScheme])must be selectedso that the
long-termcentroidsretainthe“core” informationgainedduring
the last incomingcycles.

In otherwords,theroleof thelong-termcentroidsis to givea
reasonablygoodgeneralizationcapacityaswell asclassification
performanceoverthepastpatternsstoredin thenetwork. In con-
trast,theshort-termcentroidsremove instantly thecurrentleast
contributing centroids.By exploiting thesetwo differenttypes
of memory, thenetwork canbealwayskeptin a compactsize.

Moreover, with the introductionof the two-stageshrinking
mechanism,the effect uponthe patterncorrectionsystemof a
noisy instancewould alsobe small since,even if suchan in-
stancemaytemporarilybeaddedin thenetwork growing phase,
suchaninstancewill beremovedeitherat thenext cycleor later
at the long-termmemoryupdate.

V. SIMULATION STUDY

In the simulationstudy, the proposedonline patterncorrec-
tion schemewasappliedto thethreedifferentdatasets,namely
the SFS[23] for digit voice recognitionandthe two datasets,

2This numbercorrespondsto the“saturation” of memorycapacity.

namelytheOptDigit andPenDigitdataset,for characterrecog-
nition taskschosenfrom “UCI MachineLearningRepository”
of theUniversityof California.

For thetwo datasets,i.e., theSFSandPendigit,thevolume
was partitioned into eight distinct sets: training and testing
(neverusedfor training)andtheremainingsix for theincoming
datasetno.1–6,while atotalof 14(onefor trainingandtesting,
and the remaining12 for the incoming) partitioneddatasets
wereusedfor theOptDigit dataset.

Theoriginal UCI datasetscomewith two distinct datasets
readyfor training andtesting.For eachUCI dataset(i.e., the
OptDigit andPenDigitdataset),a total of 3600featurevectors
for trainingandincomingwerearbitrarilychosenfrom theorig-
inal training set.3 Similarly, for testing,a total of 400 feature
vectorswereselectedamongthevectorsin theoriginal testing
dataset. TableI shows a list of thedatasetsusedfor thesimu-
lation studyin this paper.

Moreover, in order to confirm the consistency of the simu-
lation results,threedifferentcombinationsof the (training/six
incoming)datasetsweretried for all thethreedatasets.

A. Parameter Setting for the Network Shrinking Mechanism

In the simulation, the proposedonline pattern correction
schemewasperformedfor thesix (or, twelve for theOptDigit)
distinct incoming setsdescribedin the previous section[i.e.,
the simulationwasstoppedat ] and the following
parameterswereused.

• Maximum numberof the total centroids
, where is themaximumnumberof

thegrown (short-term)centroids.
• Number of removable centroids from the short-term

memory: .
• Periodfor updatingthe long-termmemory: . (For

example,theupdateoccurredthreetimesduringthesim-
ulation in this paper.4 )

In theabove, themaximumnumberof total centroidsin the
network is known a priori andmaybefixed,dependenton the
application.Sincethis numberrepresentsthememorycapacity
(e.g., in practicethis numberis usedto avoid memoryover-
flow problemin real implementation)andgivesa thresholdfor
the additionalcentroidsin the network growing phase.How-
ever, thechoicemustbedependenton thenumberof long-term
centroidsconsideringthegeneralizationcapability. For boththe
SFSandthePendigitdatasets, wasfixedto 100,while

for theOptDigit dataset.
Similarly, canbe fixed usingthe a priori knowledge;as

thevalue is increased,themorethenetwork forgetsthe re-
centdata.(In our examples,it wasempirically found that the
selection givesa reasonabletradeoff.)

In thesimulation,thetotalnumberof thecentroidsin thenet-
work wasprunedidenticalto thenumberof theinitial centroids,

3Theoriginal OptDigit datasetcontainsa totalof 3823and1797vectorsfor
trainingandtesting,respectively, while theoriginal PenDigitdatasetconsists
of 7494and3498vectorsfor trainingandtesting,respectively.

4In the simulation,the long-termupdateperiodwasarbitrarily chosenand
fixedto ����� for all thethreedomaindatasets.Thiswasdonein orderto per-
form theperformancecomparisonof thedata-pruningalgorithmswith asmaller
numberof theparameters.However,differentchoicesof � will bediscussedlater
in this section.
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TABLE I
DATA SETS USED IN THE SIMULATION STUDY

i.e., (however, theactualcentroidvectorswill be
differentfrom the initial setting).

The number can be varied to representthe more
dynamicnatureof the memorylearningprocessandto obtain
(hopefully)animprovedclassificationandbetterrepresentation
of thepatternspace.In concept,asin realbraintissue,modeling
multistage(or nested)shrinkingmechanismscanbe possible.
In reality, however, suchdynamicconfigurationis very hardto
analyzeandis thereforenot consideredin this paper.

For thelong-termmemoryupdate,fourdifferentdata-pruning
algorithms, i.e., the -means [25], Vertex–Chain [26],
List-Splitting [26], andtheshortestspanningtree (SST)-Split-
ting algorithm[26], wereusedanda performancecomparison
is madelater in this paper.

The threegraphtheoreticorientedalgorithmsin [26] areall
basedupona combinationof anhierarchicalgraphpartitioning
of the original graph,which is formedfrom all the patternsin
thedataset,into its subgraphsandthesearchfor the locations
of the centers[27] on eachsubgraph.In [28], the superiority
of the threedata-pruningalgorithmsto the -meansclustering
algorithm,in termsof their bothcomputationalandclassifica-
tion performanceover thedatasetscollectedfrom two speech
databases,is reported.

The algorithmsdiffer from eachother in their waysof par-
titioning of the original graph into its disjoint subgraphs;in
Vertex–Chainalgorithm,all theverticesin theoriginalgraphare
first arrangedonachain,accordingto thedistancesfrom the th
dominantvertex ( , is the countingnumberof
partitioning.),thenthechainis cut into two pieces.Thisprocess
is repeatedfor timesto obtaina totalof disjoint subgraphs
(i.e., tournament,in shape).For eachsubgraph,the locationof
the absolutecenteris calculatedandconvertedinto the corre-
spondingrepresentativepatternof thedataset.The represen-
tative patternssoobtainedarethereforeusedfor the long-term
centroidsin this paper.

In contrast,the original graph is recursively partitionedin
bothList-Splitting andSST-Splittingalgorithms.In List-Split-
ting algorithm,the distancebetweeneachvertex andthe most
(first) dominantvertex is tabulatedinto an distance-orderlist.

Then the list is split into – parts.As in VertexChain algo-
rithm,atotalof representativepatternsareobtainedfrom the
absolutecentersof the respective subgraphs.In SST-Splitting
algorithm,anSSTof theoriginal graphis createdastheinitial
partitioningtarget insteadof the orderlist. After the recursive
splitting,atotalof disjointsubgraphsareobtained.(Notethat,
unlike Vertex–Chainor List-Splitting algorithm,exactly rep-
resentative patternscanbeobtainedafter -timessplitting, i.e.,
thismethoddoesnothaveany limit onthenumberof generating
representative patterns.)

B. The SFS Data Set

TheSFSdatasetconsistsof a total of 900utterancesof the
digits from /ZERO/ to /NINE/ recordedin Englishby ninedif-
ferent speakers (including even numbersof femaleand male
speakers).Eachutteranceis sampledat20kHz andis converted
intoafeaturevectorwith anormalizedsetof 256datapointsob-
tainedby thewell-knownLPC-mel-cepstralanalysis(e.g.,see[]
or [24]). Thefeaturevectoris thereforeusedastheinputvector
of theGRNN.

For thesimulationusingtheSFSdataset,two differentcon-
figurationsof thedatasetwereconsidered.Thefirstcorresponds
to the datasetwhereboth the training andthe incomingdata
setsevenlycontaintheutterancesrecordedby theninespeakers
(SFSDataSet1), in thesecondthetrainingset,in contrast,con-
tainsthoserecordedby only threespeakersandeachincoming
setcontainsanunknown speaker, for modelinga moregeneral
situation(SFSDataSet2). For bothcases,thenumberof pat-
ternsfor eachdigit wasevenly fixedsoasto make thenetwork
grow in a “well-balanced”shape.

1) Initial Choice of RBFs: Theinitial choiceof thecentroids
from thetrainingsetwasperformedby the -meansclustering
algorithm.

In the proposedshrinking mechanism,it is important to
consider the ratio betweenthe total number of long- and
short-termcentroidsin thenetwork. Since,asdescribedearlier,
long-termcentroidscontribute to the fundamentalgeneraliza-
tion capabilityof thenetwork.

To confirm this, a comparisonof the effect of varying the
number of long-term centroidsupon the pattern correction
systemwasmade,usingthe SFSDataSet1. Fig. 2 shows the
variationin theclassificationperformance5 with thenumberof
long-termcentroidschosenby the -meansclusteringmethod
fixedat20,40,and80( : with theinitial setup,theperfor-
manceis averagedover threedifferenttrials). In thefigure,the
classificationperformancevariedgreatlywith smallernumbers
of thecentroids,whereas,with 80 long-termcentroids,theper-
formancebecomesmuchmorestable.In the samefigure, it is
interestinglyobserved that theperformancewith 80 long-term
centroidsis slightly improvedat eachlong-termupdate.

In Fig. 3, on the other hand, the ratio betweenthe total
numberof centroidsin thenetwork andlong-termcentroidsis
given.Theratio is simply definedas

5In thispaper, theterm“classificationperformance”is definedasthecorrect
classificationrateover thetestingset,unlessexplicitly denotedotherwise.
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Fig. 2. Variationsin termsof the classification performanceover the testing
set after the network shrinking (long-termmemoryupdateoccursat pattern
correctioncycles2, 4, and6. In the � -axis of the figure, “o” correspondsto
the initial state).

(7)

In the figure (note that, unlike Fig. 2, the value is cal-
culatedbeforelong-termmemoryupdate),theratio with 40
or 80 long-termcentroidsbecomesmoresteadyin comparison
with thatof 20 centroids.This suggeststhatat smallernumber
thelong-termmemoryiseasilycollapsedbythegrowncentroids
at eachpatterncorrectioncycle, whereas,at larger numberof
long-termcentroids,the long-termmemoryis not affectedand
thegrowncentroidsare,in turn,consideredto reinforcetheclas-
sificationperformance.

In thesimulationusingSFSDataSet1,atotalof 80long-term
centroidswasthusconsideredto besuitablefor theevaluation,
in termsof thegeneralizationcapability. Baseduponthesame
principle asfor the SFSDataSet1, the numberfor SFSData
Set2 wasalsofixedto 80.

2) Simulation Results: In TableII andIV, the variationsin
the total numberof centroidsin the network in order that a
perfectpatterncorrectionis achievedby theproposedgrowing
mechanismareshown (theresultsshown areaveragedover the
threedifferenttrials) usingSFSDataSet1 and2, respectively.

As shown, for theSFSDataSet1, thenumbersof centroids
spreadbetween87 and 115 for eachdata-pruningalgorithm,
while, similar to the caseusingSFSDataSet1, the numbers
using the SFSData Set 2 spreadbetween89 and 110. Note
that,for bothcases,thenumbersof centroidsgeneratedby the
Vertex–Chainmethodare always greaterthan the other three
methods.

TableIII andV, in contrast,show theaveragedclassification
performancewith the testing (unknown) data set after each
shrinkingphase,usingSFSDataSet1 and2, respectively. In
the tables,note that the classification performanceafter the
long-term memory update(i.e., at , and ) is not
degradedsignificantly for the caseusing -means,List-Split-
ting, andSST-Splittingmethod.This indicatesthat the update

Fig. 3. Variation in termsof the ratio betweenthe numberof the long-term
centroidsandthetotal numberof thecentroidsin thenetwork.

preservesthegeneralizationcapabilityof thenetwork achieved
duringtheiterative correctioncycles.

As in the tables,it is alsoobserved that, for both cases,the
overall classificationperformanceusingthethreedata-pruning
methods,i.e., -means,List-Splitting,andSST-Splitting,is im-
provedfromtheinitial settingof thenetwork, thoughtheperfor-
manceusingtheVertex–Chainmethodisdegradedasthepattern
correctioncycle increases.

C. The Two UCI Data Sets

In the simulation using the OptDigit data set, a total of
160 initial long-termcentroidswereobtainedby the -means
clusteringalgorithm,asfor the simulationusingthe SFSdata
sets.Similarly, a total of 80 prunedvectorswereusedasinitial
long-termcentroidsfor the PenDigitdataset.Thenumbersof
the initial long-termcentroidswere fixed by meansof the a
priori knowledgewith the sameprinciple asfor the SFSData
Set2 describedin SectionV-B1.

1) Simulation Results: Tables VI and VIII, respectively,
show the variation in the total numberof the centroidsat the
achievementof perfectpatterncorrectionusing the OptDigit
andPenDigitdatasets.For the OptDigit, the total numberof
centroidsspreadsbetween166 and 197, while the numbers
spreadbetween88 and118 for the PenDigit,as for the cases
usingSFSDataSetno. 1 and2.

Notethat thetotal numbersof centroidsusingVertex–Chain
methodare,again, always greaterthan thoseusing the other
threedata-pruningmethods.

In TableVII andIX, theclassificationperformancewith the
testingdatasetaftertheshrinkingphaseis givenusingtheOpt-
Digit andPenDigitdataset,respectively. In thetables,theper-
formanceusingtheVertex–Chainmethodis degradedwith in-
creasingthepatterncorrectioncycleasobservedin thesimula-
tionusingtheSFSDataSet1and2,while theperformanceusing
theotherdata-pruningmethodsshowsanimprovementoverthe
initial network setting.
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TABLE II
VARIATION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK WHEN PERFECTCORRECTION IS ACHIEVED USING SFS

DATA SET (THE RESULTS ARE AVERAGED OVER THREE DIFFERENTTRIALS)

TABLE III
CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE SHRINKING PHASE, USING SFSDATA SET 1 (THE RESULTS ARE AVERAGED

OVER THREE DIFFERENTTRIALS)

TABLE IV
VARIATION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK WHEN PERFECTCORRECTION IS ACHIEVED USING SFSDATA

SET 2 (THE RESULTS ARE AVERAGED OVER THREE DIFFERENTTRIALS)

TABLE V
CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE SHRINKING PHASE, USING SFSDATA SET 2 (THE RESULTS ARE AVERAGED

OVER THREE DIFFERENTTRIALS)

D. Discussion on the Results

In the simulationstudiesof the threedifferentdomaindata
sets,it has consistentlybeenobserved that the performance
with threeout of thefour data-pruningmethods(i.e., -means,
List-Splitting, and SST-Splitting method)used for updating
long-termmemoryis improved over that of the initial setup,

though the performancewith the Vertex–Chain method is
degradedas the patterncorrectioncycles increase.It hasalso
beenobserved that the numberof grown centroidsusing the
Vertex–Chain method is always greaterthan that using the
otherthreedata-pruningmethods.

TheseindicatethatboththeList-Splitting andSST-Splitting
methods have the capability of refining the shapeof the



98 IEEE TRANSACTIONSON NEURAL NETWORKS,VOL. 12,NO. 1, JANUARY 2001

TABLE VI
TRANSITION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK WHEN PERFECTCORRECTION IS ACHIEVED USING OPTDIGIT

DATA SET (THE RESULTS ARE AVERAGED OVER THREE DIFFERENTTRIALS)

TABLE VII
CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE SHRINKING PHASE, USING OPTDIGIT DATA SET (THE RESULTS ARE AVERAGED

OVER THREE DIFFERENTTRIALS)

TABLE VIII
TRANSITION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK WHEN PERFECTCORRECTION IS ACHIEVED USING PENDIGIT

DATA SET (THE RESULTS ARE AVERAGED OVER THREE DIFFERENTTRIALS)

patternspacespannedby the long-termcentroidsas well as
the -meansclustering method and that the Vertex–Chain

methodis, however, suffering from sparsedistribution of the
data points which affects the overall performance[26] and
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TABLE IX
CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE SHRINKING PHASE, USING PENDIGIT DATA SET (THE RESULTS ARE AVERAGED

OVER THREE DIFFERENTTRIALS)

is hence consideredto be inappropriatefor the shrinking
mechanism.

In the simulation,the long-termupdateperiod was always
fixedto for all thethreedomaindatasetssincethemain
focusof thesimulationstudyis to investigatetheperformance
of thedifferentdata-pruningmethods.In TableXI anotherper-
formancecomparisonusingOptDigit datasetwhere is
given.In comparisonof TableVII with TableXI, it is observed
thattheclassificationperformancewith is comparableor
sometimesslightly betterthanthatwith , at theexpense
of thegrown numberof thecentroidsasobservedby comparing
TableVI with TableX. Fromtheseobservations,it canbesaid
that the effect uponthe generalizationperformanceby means
of thechangein would berelatively small, thoughtherestill
maybeatradeoff betweenthetotalnumberof centroidsandthe
generalizationperformance.Therefore,in morepracticalsitua-
tions,thevaluecanbefixedaccordingto thesize(if known) or
thea priori numberof theavailableincomingdatasets.

VI. CONCLUSION

In this paper, an heuristiconline patterncorrectionscheme
usingGRNNshasbeenproposedandappliedto threedatasets
from differentdomains,i.e., theSFSandthetwo UCI datasets,
with a variantof their initial settings.Within theproposedon-
line batchpatterncorrectionscheme,boththenetwork growing
andthetwo-stagenetwork shrinkingmechanismshavebeende-
veloped.

In thesimulationstudy, it hasbeenshown thatthemisclassi-
fiedpatternscanbeperfectlycorrectedby thenetwork growing
mechanismwith comparablysmall numberof centroids.This
propertyis consideredto beparticularlysuitablefor application
in strictsecurityservicesystemswherequickpatterncorrection
andrecognitionperformancewithoutfailureoveraspecific pat-
ternsetis desired.

In contrast,in the network shrinkingphase,both long-term
memoryupdateand short-termmemoryleakagemechanisms
have beenconsideredbaseduponbiological studies[21], [11]
andrealizedin termsof thenumberof thecentroidsin thenet-
work.

For the long-term memory update,it has beenfound that
the threedata-pruningmethods,i.e., -means,List-Splitting,
andSST-Splittingmethod,aresuitable,while theVertex–Chain
methodis not dueto thesparsedistribution problem.

TABLE X
TRANSITION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK

WHEN PERFECTCORRECTIONIS ACHIEVED USING OPTDIGIT DATA SET WITH����� (THE RESULTS ARE AVERAGED OVER THREEDIFFERENTTRIALS)

TABLE XI
CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE

SHRINKING PHASE, USING PENDIGIT DATA SET WITH ���	� (THE RESULTS

ARE AVERAGED OVER THREE DIFFERENTTRIALS)

Future work will be directed toward the developmentof
the integratedalgorithms/mechanismswhich provide a more
dynamiconlinebasedpatterncorrectionschemeby exploiting
both the refining propertyof the -meansclusteringand the
hierarchicaladvantageof thegraphtheoreticmethods.
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