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Heuristic PatternCorrectionSchemelUsing
Adaptvely TrainedGeneralizedRegressionNeural
Networks

TetsuyaHoya andJonathorA. ChambersSenior Member, IEEE

Abstract—n many pattern classification problems, an
intelligent neural system isrequired which can learn the newly en-
countered but misclassified patterns incrementally, while keeping
a good classification performance over the past patternsstored in
the network. In this paper, an heuristic pattern correction scheme
isproposed using adaptively trained gener alized regression neural
networks (GRNNSs). The scheme is based upon both network
growing and dual-stage shrinking mechanisms. In the network
growing phase, a subset of the misclassified patterns in each
incoming data set is iteratively added into the network until all
the patternsin theincoming data set are classified correctly. Then,
the redundancy in the growing phase isremoved in the dual-stage
network shrinking. Both long- and short-term memory models
are considered in the network shrinking, which are motivated
from biological study of the brain. The learning capability of the
proposed scheme is investigated through extensive simulation
studies.

Index Terms—Generalized regresson neural networks
(GRNNS), incremental learning, pattern classification, pattern
correction.

I. INTRODUCTION

EURAL networks have beensuccessfullyusedin mary

patternclassifcationtasks[1]. Incrementatrainingis an
efficientlearningmechanisnior neuralnetworksthataddsnew
knowledgewithoutreinitializing the entirenetwork. Thedevel-
opmentof promisingincrementalearningmethodshasthere-
fore beenanissuewith greatinterestin the studyof neuralnet-
works [Z]-[[10].

In the last decade mary successfulpplicationsusing the
family of radial basisfunction neural networks (RBF-NNSs)
[11], [12] for the developmentof incrementakraining systems
have beenreported2]-{/6], [[10]. In [2], incrementatrainingis
achieved by addingRBFsinto the network andthenadjusting
their shapgparametersn contrastjn [3] anew RBFis created
asamixtureof Gaussiaistributionsandthis learningmethod
is appliedto multilinguistic handwrittencharacterecognition.
In recentwork [[L0], a differentincrementalearningtechnique
was proposed,in which new patternsare included with a
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relearningof the interferedpatternsretrieved from pastinput
patternsstoredin the network.

Probabilisticneuralnetworks (PNNs) [13] and generalized
regressionneural networks (GRNNs) [[14] are the paradigms
of RBF-NNs and sharea specialproperty namely that they
do not require iterative training; the weight vector between
the RBFsandthe outputunit canbe fixed asthe target vector
This attractize propertyis particularly usefulin online use of
the patternclassifer, asincrementabperationmay be quickly
achieved.Thereforefor applicationto online patterncorrection
of the misclassiied patterns,the use of these networks is
suitablesince,in practice,the size of the incomingdatasetis
normally very large.

In this paper an heuristic online batch patterncorrection
schemeis proposedbasedupona GRNN with both network
growing anddual-stageshrinkingmechanisms.

In the network growing phasea subsetof the misclassiied
patternsin theincomingdatasetavailableat cycle n is added
into the network until thereis no classifcationerrorwithin the
incomingdataset. Then,the grovn numberof centroidsis re-
ducedin thedual-stageshrinkingphaseln the shrinkingmech-
anism,a new conceptof bothlong andshort-termcentroidsis
introduced Moreover, the short-termcentroidsetsform a lay-
eredshaperepresentingemorehierarchicaimemorystructure.

The proposedschemeunlike the Parzenclassifer-basecdap-
proachesn [[18], [[19], takesan instance-based approachwith
the aid of an hierarchicaldatapartitioning mechanismwhich
eliminateghe needfor statisticaldensityapproximatiorandits
associated@¢onsiderablenathematicatomplexity.

In the next section,the heuristicpatterncorrectionscheme
usingaGRNNis describedThenetwork growing andshrinking
mechanismsare describedin detail in Sections Il and IV.
SectionV is devotedto the simulationstudiesof the proposed
schemeausingthreedifferentdatasetsfor patternclassifcation
tasksfrom differentdomainsandthe learningcapability of the
proposedschemeis evaluatedthroughextensie experimental
results.

Il. THE HEURISTIC PATTERN CORRECTIONSCHEME

The proposedheuristic patterncorrectionschemeis based
uponadualnetwork reconfgurationprocessThefirst stagein-
volvesnetwork growing, in which a subsebf the misclassiied
patternsn theincomingdatasetatcyclen is selectecandadded
into the network. In the secondstage the network is reconfg-
uredby a dual-stagenetwork shrinkingmechanism.
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Fig. 1.

Accordingto biological study[21], memoryin the braincan
be divided into two differenttypes,i.e., long- and short-term
memory dependingon the retentiontime. In [21] and[17], it
is also highlightedthat long-termmemory representknowl-
edgestoredin the brainfor along time or permanentlywhile
short-termmemoryis a compilationof knowledgerepresenting
the“current’ stateof the environment.

In the proposedpatterncorrectionscheme the conceptof
both long- andshort-termmemorymodelsare, therefore con-
sideredandrealizedin termsof leakagein the informationin
the network representetby the centroids.

The skeletonof the schemas describedasfollows.

Skeleton of the Pattern Correction Scheme:

Stepl) Initial Setup: Configure the network with a setof V;
long-term centroidsC' = {c¢y, co, ...cn,} from the
training set.Setcycle n = 1 andthe short-termcen-
troid setcounti = 1.
Network Growing: Selecta subsebf the misclassiied
patternsby testingtheincomingpatterndatasetavail-
ableat cycle n. Then,performnetwork growing until
thereis no classifcation error. This providesa setG;
of Ng, short-ternmcentroiddrom themisclassiied pat-
terns.
Step3) Network Shrinking:
1) Long-TermMemory Update: If thecycleisamul-
tiple of p (i.e.,» modp = 0), or whenthetotal
numberof the centroidsin the network

Step2)

p

whereN, = Z Ng,

7=1

reachesfeceedsa given threshold Nyotai max,
shrink the total numberof centroidsin the net-
work by emplgying a data-pruningnethodand
obtain N; new long-term centroids.Resetthe
setcount; = 1.

2) Short-Term Memory Leakage (Memory Forget-
ting): Otherwise,shrink only the sizesof the
short-termcentroidsetsG; (j = 1,2, ..., ).
Seti «+— i + 1.

Step4) Setn — n + 1, thenreturnto Step2).

Ntotal:Nl+Ng7 (1)
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lllustration of topologicalequivalencebetweerthe ML-GRNN with m Hiddenandn outputunitsandthe assemblyof then distinctsubnets.

In Step 2 above, the short-term centroid sets G;

(7 1, 2, ..., p) thusform a layeredshape representinca
hierarchicalmemory structure.This partitioning basishasan
adwantagefor giving a clearrepresentationf the datastoredat
eachcorrectioncycle and, at the network shrinkingphasethe
removal of theredundang (i.e., theleastcontributing centroids
describedlater) in the short-termmemory can be efficiently
done.

Thenetwork growing in the proposedschemeconsistof ex-
pandingthe currentnetwork suchthatthe grown network can
correctly classifyall the patternsin the currently availablein-
comingdataset.

Todothisonline}! we exploit thespeciabropertyof GRNNS,
namelythat,for anenly addedRBF theweightvectorbetween
thehiddenlayerandtheoutputcanbefixedto thetargetvector

THE NETWORK GROWING MECHANISM

A. Network Setting for Pattern Correction

Fortheproposegatterncorrectionrschemeafully connected
multilayeredGRNN (ML-GRNN) is used,which has L input
neurons M RBFs,and N outputneuronsAs illustratedin the
left partof Fig. 1, the structureof the ML-GRNN is similar to
awell-known multilayeredperceptromeuralnetwork [[11] ex-
ceptRBFsareusedin the hiddenlayerandlinearfunctionsin
the outputlayer In thefigure,z; (i = 1, 2..., L) denotethe
elementdn theinputvectorz, ¢; (j = 1, 2, ..., M) (where
thenumberof the RBFsM variesduringthe network reconfg-
uration)for the RBF aregivenby

Lo —(e—w;l2/202)

Cj = ﬁ@ (2)
wherew; is the centroidvector o is theradius,|| ... ||? is the
squarecEuclideamorm,andoy (k =1, 2, ..., N) denotethe

outputcorrespondingo Classk.

1Strictly speakingthe useof the term online in the proposedschememay
notbeappropriatesincetheincrementabperationwill notbedoneonapattern
by patternbasis Here,theauthorgustintendto emphasizenonlineuseof the
proposedscheme.
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Thetargetvectorfor Pattern: is givenasavectorof indicator
functions

T: = (61, 62, ..., 6N)

1 if patterni belongsto the class(digit)
j—1(j=1,2,...N)

0 otherwise.

With the settingabove, the topologyof the ML-GRNN with
N outputunits canbe seenasa setof N subnetswith a de-
cision unit asillustratedin the right part of Fig. 1, sincethe
weighthaving thevaluezerocanberemovedfrom the network.
Then,eachsubnets viewedasa collectionof RBFswhichrep-
resentghe entirepatternspacefor a singleclass.With the net-
work ontheright, thefinal decisionis thereforenadefollowing
the “winner-takes-all' stratayy.

6j = 3)

B. Sdection of the Misclassified Patterns

To performtheincrementabperationonline,the selectionof
the misclassifed patterngo be addedmustbe donequickly. In
this paper the selectionis suchthat the misclassiied pattern
which yields a minimum activation at the outputneuroncor-
respondingto the correctclassnumber This selectionis rea-
sonablesincethat pattern(or the newly addedcentroidvector)
will reinforcethe “rather weak” area-c@ering of the distribu-
tion. However, it is necessaryo considerthe casein which the
newly addedpatternmayjustbeanoisyinstanceln this paper
suchaninstancewould be deletedin the dual-stageshrinking
stage.
In commonly encounterecpatternclassifcation problems,
the numberof classesN. is normally known a priori. For
instance,N. = 10 for the pattern data sets of the digit
voice/characterecognitiontasks,correspondingo the digits
from /ZERO/ to /ININE/. This knowledge is particularly im-
portantto grow the network so that the overall classifcation
performancdor eachclassshouldbe improved evenly. There-
fore, the maximumnumberof RBFsaddedin one correction
countmustbefixedto the numberof classes.
In the following, a summaryof the operationto selectthe
misclassifed patternds given.
1) Sdlection of the Misclassified Patterns:
Stepl) Seti = 0.
Step2) Forj = 1to N, dothefollowing.
If thereis no misclassifcation for Classj, skip.
Otherwise,selectthe misclassifed patternwith a
minimumactivationattheoutputneuronfor Classj
amongall thepatternsn Classj, thenseti «— i+ 1.
Finally, the patterncorrectionis performedas the network
growing givenbelow.
2) Network Growing Mechanism:
Stepl) Settheiterationcountfor the correctionent = 1.
Step2) Testthe performancenf the GRNN with the current
stateusingall the patternsin theincomingdataset
availableat cycle n.

Step3) Collectall themisclassiied patternsn theincoming
dataset. Thenchoosea subsetof the misclassifed
patternsaccordingto the selectionoperationgiven
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above, and add a total of 7 selectedpatternsinto

the GRNN. For eachnewly addedRBF, the weight

vectorbetweerthenew RBF andtheoutputneurons
is fixed identical to the target vector of the corre-
spondingmisclassiied pattern.

Recalculateandfix theradii valuesof the centroids
accordingto (4).

Test again the performanceof the refined GRNN

with all the patternsn theincomingdataset.

If thereis nomisclassifcation,terminate Otherwise
ent «— ent + 1, andreturnto Step2).

In Step4) above, theradii valuesof the RBFsshouldalsobe
updatedn orderto avoid the overlappingareascoveredby the
centroids.The way in which the radii valuesarereadjusteds
describedhext.

Step4)
Stepb)

Step6)

C. Radii Setting of the GRNN Classifier

Thesettingof radii valuesis asignificantfactorfor thedesign
of RBF-NNsandsuchdeterminatioris still anopenissue[1],
[17]. In the preliminarysimulationstudieswe alsohave inves-
tigatedthe individual settingof radii valuesusingone-nearest
neighbor[22], however, the performanceusing this technique
did notyield betterresultsthantheradii settingwith fixedvalues
[20]. In this paperfixedradii valuesfor therespectie RBFsare
thereforeusedandsetidenticalaccordingo thefollowing mod-
ified radii settingfoundin [[11]:

d
o= 4
N+vV2M @
where
d maximum Euclideandistancebetweenthe centroid
vectors;
M  numberof RBF's;

N numberof unitsin theoutputlayerof the ML-GRNN.
In this paper the radii valuesare updatedduring both the
network growing andshrinkingphaseaccordingto [{4].

IV. THE NETWORK SHRINKING MECHANISM

In thenetwork shrinkingmechanismthenumberof centroids
in the network is reduced.As mentionedearlier this mecha-
nismmodelsa functionof memorylearningin theactualbrain;
newly arrivedinformationin thebrainis processethroughtwo
differenttypesof memory i.e., long- and short-termmemory
In the context of neuralnetworks, this procesds consideredo
“compress$ the datastoredin the network or, in otherwords,
remove redundang in the nodes.

By exploiting this concept,the following assumptionsare
madein this paper:

Assumption 1: The leakagein the short-termmemory is
morethanthatin thelong-termmemory

Assumption 2: The long-termmemoryis updatedperiodi-
cally (asin theskeletonof theonlinelearningschemelescribed
previously, the periodis determinedy thevaluep).

A. Leakage in Short-Term Memory

For the leakageof the short-termmemory A (s denotes
“short term”) least contributing centroidsare removed from
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eachshort-termcentroidset G; (i = 1,2, ..., n mod p)
after the network growing. The removal is basedupon the
measurementjuantifed by the contritution of the centroid

(CC).
For anRBF ¢;
Nk
cC, = 1 o=l —we, |7 /20) (5)
202 4
Jj=1
where
zj (G = patternvectorsin the incoming data set
1,2, ..., N¥)  whichbelongto Classk;
w.. centroidvectorof the RBF, ¢;;

7

o radiusof the RBF,

Note that, for eachset,the \, leastcontributing centroidsare
searchedcrossall theclasses.

The leakagein the short-termmemorycanthenbe summa-
rizedin thefollowing.

Short-Term Memory Leakage (Memory Forgetting): From
eachshort-termcentroidsetG; (: = 1,2, ..., n mod p),
remove ) leastcontrituting centroids The numberof thetotal
centroidsNg, aftertheremoval is definedas

NG7 = max{NG7 - )\g, 0} (6)

wherezerogivesafloor (i.e.,noremovablecentroids).

B. Long-Term Memory Update

In contrastto the leakagein the short-termmemory all
the centroidsin the network are updatedfor the long-term
memory This updatewill occur either after a specifc period
(i.e.,atacycle wheren is a multiple of p) or the total number
of the centroidsN;.i.; reachesfeceedshe maximumnumber
Niotal, max.2 FOr theupdate a data-pruningnethodis used.

The data-pruningmethod (usedin Step 3 of [Skeleton of
the Pattern CorrectionScheme])must be selectedso that the
long-termcentroidsretainthe“core” informationgainedduring
thelastincomingcycles.

In otherwords,therole of thelong-termcentroidgs to give a
reasonablgoodgeneralizatiowapacityaswell asclassifcation
performanceverthepastpatternstoredn thenetwork. In con-
trast,theshort-termcentroidsemove instantly the currentleast
contrikuting centroids By exploiting thesetwo differenttypes
of memory the network canbe alwayskeptin acompactize.

Moreover, with the introductionof the two-stageshrinking
mechanismthe effect uponthe patterncorrectionsystemof a
noisy instancewould also be small since,evenif suchanin-
stanceanaytemporarilypeaddedn thenetwork growing phase,
suchaninstancewill beremovedeitheratthenext cycle or later
atthelong-termmemoryupdate.

V. SIMULATION STUDY

In the simulationstudy the proposedonline patterncorrec-
tion schemavasappliedto thethreedifferentdatasets hamely
the SFS[23 for digit voice recognitionandthe two datasets,

2This numbercorrespondso the “saturatiori of memorycapacity
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namelythe OptDigit andPenDigitdataset,for characterecog-
nition taskschoserfrom “UCI MachineLearningRepository”
of the University of California.

For thetwo datasets,i.e., the SFSandPendigit,the volume
was partitionedinto eight distinct sets: training and testing
(neverusedfor training)andtheremainingsix for theincoming
datasetno.1-6,while atotal of 14 (onefor trainingandtesting,
and the remaining12 for the incoming) partitioneddatasets
wereusedfor the OptDigit dataset.

Theoriginal UCI datasetscomewith two distinct datasets
readyfor training andtesting.For eachUCI dataset(i.e., the
OptDigit andPenDigitdataset),a total of 3600featurevectors
for trainingandincomingwerearbitrarily choserfrom theorig-
inal training set3 Similarly, for testing,a total of 400 feature
vectorswereselectecamongthe vectorsin the original testing
dataset. Tablel shavs alist of the datasetsusedfor the simu-
lation studyin this paper

Moreover, in orderto confirm the consisteng of the simu-
lation results,threedifferentcombinationsof the (training/six
incoming)datasetsweretried for all thethreedatasets.

A. Parameter Setting for the Network Shrinking Mechanism

In the simulation, the proposedonline pattern correction
schemewvasperformedfor the six (or, twelve for the OptDigit)
distinct incoming setsdescribedin the previous section|i.e.,
the simulationwas stoppedat n = 6(12)] andthe following
parametersvereused.

» Maximum numberof the total centroids Niota), max =
Ni+ Ny, max, WhereN, . is themaximumnumberof
the grown (short-term)centroids.

* Number of removable centroids from the short-term
memory:\; = 2.

« Periodfor updatingthe long-termmemory:p = 2. (For
example,the updateoccurrecthreetimesduringthe sim-
ulationin this papert)

In the abore, the maximumnumberof total centroidsin the
network is known a priori andmay befixed,dependenbnthe
application.Sincethis numberrepresentshe memorycapacity
(e.g.,in practicethis numberis usedto avoid memoryover-
flow problemin realimplementationandgivesathresholdfor
the additional centroidsin the network growing phase.How-
ever, thechoicemustbe dependendn the numberof long-term
centroidsconsideringhegeneralizatiorcapability For boththe
SFSandthe Pendigitdatasets,N, ,.x Wasfixedto 100, while
Ny max = 300 for the OptDigit dataset.

Similarly, A, canbe fixed usingthe a priori knowledge;as
thevalue )\, is increasedthe morethe network forgetsthe re-
centdata.(In our examples,it was empirically found that the
selection\; = 2 givesareasonabléradeof.)

In thesimulation thetotal numberof thecentroidsn thenet-
work waspruneddenticalto thenumberof theinitial centroids,

3Theoriginal OptDigit datasetcontainsa total of 3823and1797vectorsfor
training andtesting,respectiely, while the original PenDigitdatasetconsists
of 7494and3498vectorsfor trainingandtesting,respectiely.

4In the simulation,the long-termupdateperiod was arbitrarily chosenand
fixedto p = 2 for all thethreedomaindatasets.This wasdonein orderto per-
form theperformanceomparisorof thedata-pruninglgorithmswith asmaller
numbeiof theparameterd-dowever, differentchoiceof p will bediscussethter
in this section.
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TABLE |

DATA SETSUSEDIN THE SIMULATION STUDY

Total Num. | Total Num. of | Num. of | Num. of
of Samples in | Samples in the | Long Term | In-coming
Data Set || the Data Set Training Set Centroids | Data Sets
SFS 900 270 80 6
OptDigit 4000 1200 160 12
PenDigit 4000 1200 80 6
Num. of Sam- | Num. of Sam- Num. of Data
ples in Each ples in the Points in a
Data Set || In-coming Set Testing Set Feature Vector
SFS 90 90 256
OptDigit 200 400 64
PenDigit 400 400 16

i.e., Ni new = N; (however, the actualcentroidvectorswill be
differentfrom theinitial setting).

The number N; ... can be varied to representthe more
dynamicnatureof the memorylearningprocessandto obtain
(hopefully)animprovedclassifcationandbetterrepresentation
of thepatternspaceln conceptasin realbraintissue modeling
multistage(or nested)shrinking mechanismganbe possible.
In reality, however, suchdynamicconfigurationis very hardto
analyzeandis thereforenot consideredn this paper

Forthelong-termmemoryupdatefour differentdata-pruning
algorithms, i.e., the k-means [25], Vertex—Chain [26],
List-Splitting [26], andthe shortestspanningree (SST)-Split-
ting algorithm[26], were usedanda performanceomparison
is madelaterin this paper

The threegraphtheoreticorientedalgorithmsin [26] areall
basedupona combinationof an hierarchicalgraphpartitioning
of the original graph,which is formedfrom all the patternsin
the dataset,into its subgraph@ndthe searchfor thelocations
of the centers[27] on eachsubgraphln [28], the superiority
of the threedata-pruningalgorithmsto the k-meansclustering
algorithm,in termsof their both computationabnd classifca-
tion performanceover the datasetscollectedfrom two speech
databasess reported.

The algorithmsdiffer from eachotherin their ways of par-
titioning of the original graphinto its disjoint subgraphsjn
Vertex—Chainalgorithm,all theverticesin theoriginalgraphare
firstarrangednachain,accordingo thedistance$rom thesth
dominantvertex (i = 1, 2, ...q, q is the countingnumberof
partitioning.),thenthechainis cutinto two piecesThis process
is repeatedor ¢ timesto obtainatotal of 2¢4 disjointsubgraphs
(i.e.,tournamentin shape)For eachsubgraphthe locationof
the absolutecenteris calculatedand corvertedinto the corre-
spondingepresentate patternof thedataset. The2q represen-
tative patternsso obtainedarethereforeusedfor the long-term
centroidsin this paper

In contrast,the original graphis recursively partitionedin
both List-Splitting and SST-Splittingalgorithms.In List-Split-
ting algorithm, the distancebetweeneachvertex andthe most
(first) dominantvertex is takulatedinto an distance-ordelist.
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Thenthe list is split into 29— parts.As in VertexChain algo-
rithm, atotal of 27 representatie patternsareobtainedrom the
absolutecentersof the respectie subgraphsin SST-Splitting
algorithm,an SSTof the original graphis createdastheinitial
partitioningtamget insteadof the orderlist. After the recursve
splitting, atotal of ¢ disjointsubgraphsreobtained(Notethat,
unlike Vertex—Chainor List-Splitting algorithm,exactly ¢ rep-
resentatie patternscanbe obtainedafter ¢-timessplitting, i.e.,
thismethoddoesnothave ary limit onthenumberof generating
representatie patterns.)

B. The SFSData Set

The SFSdatasetconsistsof a total of 900 utterance®f the
digits from /ZERO/ to /NINE/ recordedn Englishby nine dif-
ferent spealers (including even numbersof femaleand male
spealers).Eachutterances sampledat 20 kHz andis corverted
into afeaturevectorwith anormalizedsetof 256datapointsob-
tainedby thewell-known LPC-mel-cepstradnalysige.g.,sed]
or [24]). Thefeaturevectoris thereforeusedastheinputvector
of the GRNN.

For the simulationusingthe SFSdataset,two differentcon-
figurationsof thedatasetwereconsideredThefirstcorresponds
to the datasetwhereboth the training and the incoming data
setsavenly containthe utterancesecordecdby theninespealers
(SFSDataSetl), in thesecondhetrainingset,in contrastcon-
tainsthoserecordedby only threespealkrsandeachincoming
setcontainsanunknavn spealer, for modelinga moregeneral
situation(SFSDataSet?2). For both casesthe numberof pat-
ternsfor eachdigit wasevenly fixedsoasto make the network
grow in a“well-balanced’shape.

1) Initial Choiceof RBFs: Theinitial choiceof thecentroids
from the training setwasperformedby the k-meansclustering
algorithm.

In the proposedshrinking mechanismiit is important to
considerthe ratio betweenthe total number of long- and
short-termcentroidsin the network. Since,asdescribedearlier
long-termcentroidscontrikute to the fundamentabeneraliza-
tion capabilityof the network.

To confirm this, a comparisonof the effect of varying the
number of long-term centroids upon the pattern correction
systemwas made,usingthe SFSDataSet1. Fig. 2 shavs the
variationin the classifcation performance with the numberof
long-termcentroidschosenby the k-meansclusteringmethod
fixedat20,40,and80 (n = 0: with theinitial setup the perfor-
manceis averagedover threedifferenttrials). In thefigure,the
classifcationperformancevariedgreatlywith smallernumbers
of thecentroidswhereasyith 80 long-termcentroidsthe per-
formancebecomesnuchmorestable.In the samefigure, it is
interestinglyobsenred that the performancewith 80 long-term
centroidsis slightly improvedat eachlong-termupdate.

In Fig. 3, on the other hand, the ratio betweenthe total
numberof centroidsin the network andlong-termcentroidsis
given.Theratio ry; is simply definedas

r Ntot,al
It =
Ny

5In this papertheterm“classification performance’ls defined asthe correct
classifcationrateover thetestingset,unlessexplicitly denotedotherwise.
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Fig. 2. Variationsin termsof the classifcation performanceover the testing
setafter the network shrinking (long-term memory updateoccursat pattern
correctioncycles 2, 4, and 6. In the x-axis of the figure, “0” correspondgo
theinitial state).
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e ™

In the figure (note that, unlike Fig. 2, the valuery; is cal-
culatedbeforelong-termmemoryupdate) theratio r;; with 40
or 80 long-termcentroidshecomesnoresteadyin comparison
with thatof 20 centroids.This suggestshatat smallernumber
thelong-termmemoryis easilycollapsedy thegrovn centroids
at eachpatterncorrectioncycle, whereasat larger numberof
long-termcentroids the long-termmemoryis not affectedand
thegrown centroidsare,in turn,consideredo reinforcetheclas-
sification performance.

In thesimulationusingSFSDataSet1, atotalof 80long-term
centroidswasthusconsideredo be suitablefor the evaluation,
in termsof the generalizatiorcapability Baseduponthe same
principle asfor the SFSData Set1, the numberfor SFSData
Set2 wasalsofixedto 80.

2) Smulation Results: In Tablell andlV, the variationsin
the total numberof centroidsin the network in order that a
perfectpatterncorrectionis achievzed by the proposedyrowing
mechanisnareshowvn (theresultsshovn areaveragedover the
threedifferenttrials) usingSFSDataSet1 and2, respectiely.

As shawn, for the SFSDataSet1, the numbersof centroids
spreadbetween87 and 115 for eachdata-pruningalgorithm,
while, similar to the caseusing SFSDataSet1, the numbers
using the SFS Data Set 2 spreadbetween89 and 110. Note
that, for both casesthe numbersof centroidsgeneratedy the
Vertex—Chainmethodare always greaterthan the otherthree
methods.

Tablelll andV, in contrastshow the averagecclassifcation
performancewith the testing (unknavn) data set after each
shrinking phase using SFSDataSet1 and 2, respectiely. In
the tables, note that the classifcation performanceafter the
long-term memory update(i.e., at n = 2, 4, and 6) is not
degradedsignificantly for the caseusing k-means List-Split-
ting, and SST-Splittingmethod.This indicatesthat the update
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Fig. 3. Variationin termsof the ratio betweenthe numberof the long-term
centroidsandthetotal numberof the centroidsin the network.

preseresthe generalizatiortapabilityof the network achieved
duringtheiterative correctioncycles.

As in thetables,it is alsoobsened that, for both casesthe
overall classifcation performancaisingthe threedata-pruning
methodsi.e., k.-meansList-Splitting,andSST-Splitting is im-
provedfromtheinitial settingof thenetwork, thoughtheperfor-
manceusingtheVertex—Chainmethods degradedasthepattern
correctioncycle increases.

C. The Two UCI Data Sets

In the simulation using the OptDigit data set, a total of
160 nitial long-termcentroidswere obtainedby the k-means
clusteringalgorithm,asfor the simulationusingthe SFSdata
sets.Similarly, atotal of 80 prunedvectorswereusedasinitial
long-termcentroidsfor the PenDigitdataset. The numbersof
the initial long-term centroidswere fixed by meansof the a
priori knowledgewith the sameprinciple asfor the SFSData
Set?2 describedn SectionV-B1.

1) Smulation Results: Tables VI and VIII, respectiely,
shav the variationin the total numberof the centroidsat the
achievementof perfectpatterncorrectionusing the OptDigit
and PenDigitdatasets.For the OptDigit, the total numberof
centroidsspreadsbetween166 and 197, while the numbers
spreadbetween88 and 118 for the PenDigit,asfor the cases
usingSFSDataSetno. 1 and?2.

Notethatthetotal numbersof centroidsusingVertex—Chain
methodare, again, always greaterthan thoseusing the other
threedata-pruningnethods.

In TableVIl andIX, the classifcation performancewith the
testingdatasetafterthe shrinkingphases givenusingthe Opt-
Digit andPenDigitdataset,respectiely. In thetables the per-
formanceusingthe Vertex—Chainmethodis degradedwith in-
creasinghe patterncorrectioncycle asobsenredin the simula-
tionusingtheSFSDataSet1 and2, while theperformanceising
theotherdata-pruningnethodsshonvs animprovementoverthe
initial network setting.
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TABLE I
VARIATION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK WHEN PERFECT CORRECTION IS ACHIEVED USING SFS
DATA SET (THE RESULTS ARE AVERAGED OVER THREE DIFFERENT TRIALS)

Method for Total Number of Centroids After Average from
Long Term the Pattern Correction at Cycle n n=3to
Memory Update || Init. =1 |n=2|n=3 |n=4|n=5|n=6 n==6
k-means 92 98 87 94 93
List-Splitting 80 95 105 94 98 89 96 94
SST-Splitting 92 99 87 93 93
Vertex-Chain 97 105 102 115 105
TABLE Il

CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE SHRINKING PHASE, USING SFSDATA SET 1 (THE RESULTS ARE AVERAGED
OVER THREE DIFFERENT TRIALS)

Method for Classification Performance Average from
Long Term After the Network Shrinking at Cycle n n=1to
Memory Update | Init. fn=1|{n=2|n=3|n=4[n=5|n=6 n==6
k-means 86.7% | 90.4% | 87.8% | 90.4% | 88.5% 89.0%
List-Splitting || 85.5% || 90.4% | 83.7% | 88.56% | 87.7% | 90.4% | 87.8% 88.1%
SST-Sphitting 85.9% | 88.2% | 88.5% | 90.0% | 88.9% 88.7%
Vertex-Chain 80.0% | 84.4% | 78.9% | 87.8% | 77.8% 83.2%
TABLE IV

VARIATION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK WHEN PERFECT CORRECTION|S ACHIEVED USING SFSDATA
SET 2 (THE RESULTS ARE AVERAGED OVER THREE DIFFERENT TRIALS)

Method for Total Number of Centroids After Average from
Long Term the Pattern Correction at Cycle n n=3to
Memory Update | Init. [n=1|n=2|{n=3|n=4|n=5|n==6 n==6
k-means 90 103 91 105 97
List-Splitting 80 96 108 90 102 92 102 97
SST-Splitting 91 102 89 99 95
Vertex-Chain 95 110 96 109 103
TABLE V

CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE SHRINKING PHASE, USING SFSDATA SET 2 (THE RESULTS ARE AVERAGED
OVER THREE DIFFERENT TRIALS)

Method for Classification Performance Average from
Long Term After the Network Shrinking at Cycle n n=1to
Memory Update | Init. | n=1|{n=2|n=3 |n=4|n=5|n=6 n==6
k-means 82.2% | 87.8% | 84.8% | 85.6% | 85.9% 85.0%
List-Splitting || 84.1% || 83.7% | 87.4% | 89.6% | 84.4% | 87.8% | 87.8% 86.8%
SST-Splitting 87.8% | 87.0% | 89.3% | 88.2% | 89.6% 87.6%
Vertex-Chain 78.2% | 80.8% | 76.3% | 79.3% | 73.3% 78.6%
D. Discussion on the Results though the performancewith the Vertex—Chain method is

degradedasthe patterncorrectioncyclesincreaselt hasalso

In the simulationstudiesof the threedifferentdomaindata beenobsened that the numberof grown centroidsusing the

sets, it has consistentlybeenobsenred that the performance Vertex—Chain methodis always greaterthan that using the
with threeout of thefour data-pruningnethodgi.e., k-means, otherthreedata-pruningnethods.

List-Splitting, and SST-Splitting method) used for updating Theseindicatethatboththe List-Splitting and SST-Splitting

long-termmemoryis improved over that of the initial setup, methodshave the capability of refining the shapeof the
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TABLE VI
TRANSITION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK WHEN PERFECT CORRECTION IS ACHIEVED USING OPTDIGIT
DATA SET (THE RESULTS ARE AVERAGED OVER THREE DIFFERENT TRIALS)

Method for Total Number of Centroids After
Long Term the Pattern Correction at Cycle n
Memory Update || Init. [n=1|n=2| n=3 | n=4 | n=5 n==6
k-means 169 171 178 168
List-Splitting 160 184 192 168 175 171 173
SST-Splitting 170 175 171 176
Vertex-Chain 173 185 181 195
Method for Total Number of Centroids After Average from
Long Term the Pattern Correction at Cycle n n=3to
Memory Update | n=7 |n=8 |[n=9 (n=10|n=11 [ n=12 n=12
k-means 168 174 168 171 166 176 172
List-Splitting 171 173 167 172 167 176 171
SST-Splitting 167 171 169 172 167 175 171
Vertex-Chain 184 197 180 191 181 197 186
TABLE VII

CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE SHRINKING PHASE, USING OPTDIGIT DATA SET (THE RESULTS ARE AVERAGED
OVER THREE DIFFERENT TRIALS)

Method for Classification Performance
Long Term After the Network Shrinking at Cycle n
Memory Update | Init. | n=1|n=2|n=3 | n=4 | n=5 n==6
k-means 90.1% | 90.3% | 90.5% | 91.2% 90.9%
List-Splitting || 86.8% || 90.8% | 89.3% | 93.0% | 90.7% | 91.4% 91.3%
SST-Splitting 90.4% | 90.6% | 89.7% | 90.9% 90.8%
Vertex-Chain 84.3% | 86.1% | 83.0% | 84.1% 83.1%
Method for Classification Performance Average from
Long Term After the Network Shrinking at Cycle n n=1to
Memory Update | n=7 | n=8 |n=9 [n=10 |n=11 | n=12 n=12
k-means 912% | 89.1% | 89.4% | 89.8% | 89.8% | 90.4% 90.3%
List-Splitting 91.2% | 89.8% | 89.9% | 88.9% | 89.5% | 88.4% 90.4%
SST-Splitting || 90.7% | 90.1% | 90.4% | 91.1% | 91.2% | 90.2% 90.6%
Vertex-Chain 83.7% | 77.4% | 719.5% | 76.2% | 79.1% | 75.2% 81.9%
TABLE VI

TRANSITION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK WHEN PERFECT CORRECTION|S ACHIEVED USING PENDIGIT
DATA SET (THE RESULTS ARE AVERAGED OVER THREE DIFFERENT TRIALS)

Method for Total Number of Centroids After Average from
Long Term the Pattern Correction at Cycle n n=3to
Memory Update || Init. [n=1|n=2{n=3 |n=4{n=5|n=6 n==~6
k-means 91 94 88 96 93
List-Splitting 80 103 112 95 103 94 101 98
SST-Splitting 91 97 89 98 94
Vertex-Chain 103 108 109 118 110

patternspacespannedby the long-termcentroidsas well as methodis, however, suffering from sparsedistribution of the
the k-meansclustering method and that the Vertex—Chain data points which affects the overall performance[26] and
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IX

CLASSIFICATION PERFORMANCEOVER THE TESTING DATA SET AFTER THE SHRINKING PHASE, USING PENDIGIT DATA SET (THE RESULTS ARE AVERAGED
OVER THREE DIFFERENT TRIALS)

Method for Classification Performance Average from
Long Term After the Network Shrinking at Cycle n n=1to
Memory Update || Init. | n=1|n=2 |n=3 |n=4{n=5|n=6 n==6
k-means 92.8% | 93.9% | 90.3% | 92.3% | 90.3% 92.3%
List-Splitting || 88.0% { 94.3% | 86.2% | 91.7% | 89.3% | 92.6% | 89.3% 90.6%
SST-Splitting 92.4% | 92.5% | 93.1% | 93.7% | 91.6% 92.9%
Vertex-Chain 82.7% | 93.4% | 82.1% | 91.0% | 74.4% 86.3%
TABLE X

is hence consideredto be inappropriatefor the shrinking
mechanism.

In the simulation,the long-termupdateperiod was always
fixedto p = 2 for all thethreedomaindatasetssincethe main
focusof the simulationstudyis to investicatethe performance
of thedifferentdata-pruningnethodsin TableXI anothemper-
formancecomparisorusing OptDigit datasetwherep = 4 is
given.In comparisorof TableVIl with TableXI, it is obsered
thatthe classifcationperformancevith p = 4 is comparabler
sometimesslightly betterthanthatwith p = 2, atthe expense
of thegrown numberof thecentroidsasobsenedby comparing
TableVI with TableX. Fromtheseobserations,it canbesaid
that the effect uponthe generalizatiorperformanceby means
of the changein p would be relatively small, thoughtherestill
maybeatradeof betweerthetotal numberof centroidsandthe
generalizatiorperformanceTherefore jn morepracticalsitua-
tions,thevaluecanbefixedaccordingo the size(if known) or
thea priori numberof the availableincomingdatasets.

VI. CONCLUSION

In this paper an heuristiconline patterncorrectionscheme
usingGRNNshasbeenproposedandappliedto threedatasets
from differentdomainsj.e.,the SFSandthetwo UCI datasets,
with a variantof their initial settings.Within the proposedn-
line batchpatterncorrectionschemehoththe network growing
andthetwo-stagenetwork shrinkingmechanismbave beende-
veloped.

In the simulationstudy it hasbeenshovn thatthe misclassi-
fied patternscanbeperfectlycorrectedy the network growing
mechanisnmwith comparablysmall numberof centroids.This
propertyis consideredo beparticularlysuitablefor application
in strictsecurityservicesystemavherequick patterncorrection
andrecognitionperformanceavithoutfailureoveraspecifc pat-
ternsetis desired.

In contrast,in the network shrinking phase pboth long-term
memory updateand short-termmemoryleakagemechanisms
have beenconsideredaseduponbiological studies[21], [11]
andrealizedin termsof the numberof the centroidsin the net-
work.

For the long-term memory update,it hasbeenfound that
the three data-pruningmethods,i.e., k-means,List-Splitting,
andSST-Splittingmethod aresuitable while the Vertex—Chain
methodis not dueto the sparsalistribution problem.

TRANSITION IN THE TOTAL NUMBER OF THE CENTROIDS IN THE NETWORK
WHEN PERFECTCORRECTIONIS ACHIEVED USING OPTDIGIT DATA SET WITH
p = 4 (THE RESULTS ARE AVERAGED OVER THREE DIFFERENT TRIALS)

Method for Total Number of Centroids After
Long Term the Pattern Correction at Cycle n
Memory Update || Init. | n=1|n=2|n=3 | n=4 | n=5 n==6
k-means 168 174
List-Splitting 160 184 192 198 199 170 179
SST-Splitting 169 177
Vertex-Chain 180 190
Method for Total Number of Centroids After Average from
Long Term the Pattern Correction at Cycle n n=>5to
Memory Update | n=T7 [n=8 ([n=9|n=10[{n=11 |n=12 n=12
k-means 179 181 170 174 177 183 176
List-Splitting 186 188 168 172 172 178 177
SST-Splitting 182 184 170 172 177 184 177
Vertex-Chain 196 201 178 187 193 204 191
TABLE Xl

CLASSIFICATION PERFORMANCE OVER THE TESTING DATA SET AFTER THE
SHRINKING PHASE, USING PENDIGIT DATA SETWITH p = 4 (THE RESULTS
ARE AVERAGED OVER THREE DIFFERENT TRIALS)

Method for Classification Performance
Long Term After the Network Shrinking at Cycle n
Memory Update | Init. | n=1|n=2|n=3 | n=4 | n=5 n==6
k-means 90.9% | 91.6% | 91.5%
List-Splitting 86.8% || 90.8% | 92.3% | 91.2% | 89.4% | 89.9% 89.4%
SST-Splitting %0.9% | 91.4% | 91.3%
Vertex-Chain 83.1% | 82.1% 85.6%
Method for Classification Performance Average
Long Term After the Network Shrinking at Cycle n n=1to
Memory Update [ n=7 |n=8 |[n=9 [n=10|n=11 |n=12 || n=12
k-means 91.7% | 91.2% | 91.5% | 91.5% | 91.4% | 91.2% 91.4%
List-Splitting 89.9% | 90.2% | 90.2% | 89.9% | 90.1% | 90.3% || 90.3%
SST-Splitting || 91.6% | 92.7% | 92.7% | 92.7% | 92.5% | 91.7% | 91.8%
Vertex-Chain 86.5% | 80.2% | 81.8% | 83.7% | 84.2% | 74.8% | 84.7%

Future work will be directed toward the developmentof
the integratedalgorithms/mechanismehich provide a more
dynamiconline basedpatterncorrectionschemeby exploiting
both the refining property of the k-meansclusteringand the
hierarchicaladwantageof the graphtheoreticmethods.
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