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Simultaneous Pattern Classification and Multidomain
Association Using Self-Structuring Kernel
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Abstract—In this paper, a novel exemplar-based constructive
approach using kernels is proposed for simultaneous pattern clas-
sification and multidomain pattern association tasks. The kernel
networks are constructed on a modular basis by a simple one-shot
self-structuring algorithm motivated from the traditional Hebbian
principle and then, they act as the flexible memory capable of
generalization for the respective classes. In the self-structuring
kernel memory (SSKM), any arduous and iterative network
parameter tuning is not involved for establishing the weight
connections during the construction, unlike conventional ap-
proaches, and thereby, it is considered that the networks do not
inherently suffer from the associated numerical instability. Then,
the approach is extended for multidomain pattern association,
in which a particular domain input cannot only activate some
kernel units (KUs) but also the kernels in other domain(s) via the
cross-domain connection(s) in between. Thereby, the SSKM can
be regarded as a simultaneous pattern classifier and associator. In
the simulation study for pattern classification, it is justified that an
SSKM consisting of distinct kernel networks can yield relatively
compact-sized pattern classifiers, while preserving a reasonably
high generalization capability, in comparison with the approach
using support vector machines (SVMs).

Index Terms—Constructive approach, kernel method, pattern
classification, self-structuring neural networks.

I. INTRODUCTION

I N THE area of pattern classification, artificial neural net-
works (ANNs) have played a significant role. One of the

widely used ANNs, namely, multilayered perceptron neural
networks (MLP-NNs), which were pioneered in the early
1960s and proposed as a natural extension of perceptrons [1],
[2], have been used for various pattern classification problems
(for the general issue of pattern classification tasks, see, e.g.,
[3] and [4]). In MLP-NNs, sigmoidal functions are used for
representing the nonlinearity, and the network parameters, such
as the weight vectors between the input and hidden and those
between hidden and output layers, are usually adjusted by the
backpropagation (BP) algorithm [5]–[7]. However, it is now
well recognized that, in practice, learning of the MLP-NN
parameters by BP-type algorithms quite often suffers from
becoming stuck in local minima and requiring long period of
learning, both of which are good reason for detracting their
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utility in online processing. This account also holds for training
ordinary radial basis function neural networks (RBF-NNs)
[8]–[11] or a family of self-organizing feature maps (SOFMs)
[12]–[14], since tuning the network parameters resorts to a
gradient–descent type optimization algorithm, which normally
requires iterative and long training to obtain an input–output
mapping.

In the early 1990s, the effectiveness of kernel discriminant
analysis [15] was rediscovered by Specht, which led him to
define the notion of probabilistic neural networks (PNNs)
[16], [17]. Subsequently, Nadaraya–Watson kernel regression
[18], [19] was reformulated as generalized regression neural
networks (GRNNs) [20]. In the ANN context, both PNNs
and GRNNs have layered structures as in MLP-NNs and are
categorized into a family of RBF-NNs, in which the hidden
neurons are represented by Gaussian response functions (or,
Gaussian kernels) and connected via the weights to the output
nodes with a linear operation (i.e., normalized sum). While
the roots of PNNs and GRNNs differ from each other, the
only difference between these networks (in the strict sense)
is, in practice, confined to their implementation; for PNNs,
the weights between the RBFs and the output node(s) (which
are given identical to the target values for both the PNNs and
GRNNs) are normally fixed to binary (0/1) values, whereas
GRNNs generally do not hold such restriction in the weight
setting (for this issue, see also [21]). Thus, unlike MLP-NNs,
SOFMs, or ordinary RBF-NNs, it is essentially not necessary
for PNNs and GRNNs to tune a number of network parameters
in order to obtain a good convergence rate for achieving a
reasonable generalization performance, or to worry about any
numerical instability, such as local minima, or long and iterative
training of the network parameters. By exploiting the property
of GRNNs/PNNs, simple and quick incremental learning is
possible, due to their inherent memory-based architecture,1

whereby the network growing/shrinking is straightforwardly
performed [23], [24]. Moreover, it is reported in [25] that a
PNN constructed by a simple incremental training scheme
even exhibits a capability to accommodate new classes, while
maintaining a reasonably high generalization capability.

In a similar context, a number of constructive approaches
using Gaussian kernels have been proposed and applied to pat-
tern classification tasks in the last decade [26]–[29], though all
these approaches seem to still require a rather mathematically

1In general, the original RBF-NN scheme has already exhibited a similar
property; in [22], it is stated that a reasonable initial performance still can be
obtained merely by setting the centers to a subset of the examples.
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Fig. 1. KU (represented in the simplest form).

complex parameter approximation procedure for the improved
accuracy (i.e., optimization of centroid vectors and/or the
radii for RBFs). On the other hand, in the machine learning
context, support vector machines (SVMs) have recently
attracted great interest and can be regarded as one of the
modern and “state-of-the-art” methods for pattern classification
[30][31][32], and later some approaches for the extension to
multiclass problems have been proposed [33], [34]. Never-
theless, the approaches using SVMs also essentially involve
a rather arduous optimization procedure, as in the aforemen-
tioned constructive approaches, and the implementation can
even become prohibitive for real world problems [31].

In other disciplines than ANNs, it is interesting to note that
a number of models similar to RBF-NNs such as generalized
context model (GCM) [35], the extended model, i.e., attention
learning covering map (ALCOVE) [36] and Gaussian mixture
model (GMM) (for the detail, see, e.g., [32]) have been proposed
independently; the former two (i.e., GCM and ALCOVE) were
proposed within the psychological context, while the latter has
been described within a general statistical learning context.

Then, the lines of research works described previously indi-
cate that the concept of “kernels,” the term of which can be back-
dated to kernel discriminant analysis [15], is a key for general
pattern classification problems. Moreover, it has been consid-
ered (see, e.g., [22] and [29]) that the functionality of a kernel
such as an RBF represents that of a local receptive field as in
the neurophysiological works in the late 1950s by Mountcastle
[37] and Hubel and Wiesel [38].

II. SELF-STRUCTURING KERNEL MEMORY (SSKM)

By exploiting the concept of “kernels,” the SSKM [i.e., origi-
nally termed self-organizing kernel memory (SOKM)] was pro-
posed as a new form of ANNs and given as a basis for modeling
various cognitive/psychological functionalities [24], [39]–[41].

Kernel memory is composed of a set of kernel units (KUs),
representing the most elementary constituents of memory, and
their mutual connections [viz. link weights (LWs)]. As in Fig. 1,
a KU used in this paper consists of the following two elements
[41]: 1) the kernel function , given the input data

and 2) multiple addressing pointers to other
KUs , which are used for establishing con-
nections with other KUs (i.e., LWs). Then, a pattern classi-
fier consisting of multiple distinct kernel networks (constructed
within the SSKM principle for general -class problems to be

described later) can be formed as illustrated in Fig. 2. Thus, each
kernel network is responsible for a particular class.

A. Kernel Function

Here, a kernel function is defined as a certain distance metric
between the two vectors and

(1)

where is called the template vector of the KU, with the same
dimension as (i.e., ) and the function
yields a certain metric between and . Thus, a variant of kernel
functions, as defined by (1), can be considered, such as the inner
product, Euclidean distance, Epanechnikov quadratic, etc. (for
a concise summary and relevant issues of kernel functions, see,
e.g., [32]). Of particular interest here is Gaussian response func-
tion (or an RBF), i.e.,

(2)

where denotes -norm and where 2 and are called the
centroid vector and radius, respectively, since not only the func-
tion embraces the similarity measurement of two vectors but
also the output is strictly bounded within the range from 0 to 1,
which evidently describes that a Gaussian response function it-
self performs a local pattern matching (see also [22]). Although,
within the kernel memory context, it is still possible to consider
a mixture of kernel representations rather than a single, we here-
after refer to the term “kernel” as Gaussian kernel, without loss
of generality.

Then, if there are no lateral connections (i.e., represented
by the LWs in between) within the kernel memory, with ap-
plying the topological equivalence property to the distinct kernel
memory networks [24] (i.e., a collection of RBFs for a partic-
ular class can be represented by a subnetwork within a PNN),
and if the decision unit is replaced by the output node with a
sum operator, the structure is eventually reduced to a PNN [16],
[17].

Note that, within the kernel memory context, the output of the
kernel function (or the activation/excitation) is not always
necessarily transferred directly to the other KUs via the LWs; in
the family of RBF-NNs, each output is always calculated as the
total sum of the weight value times the activation of the hidden
(i.e., the RBF) units, which in general yields the final output.
Instead, where appropriate, the links between the kernel and
others are established by using the aforementioned addressing
pointers , each of which specifies the absolute
locations of adjacent kernels within the memory space, and the
LW 3 between the kernel and

will be assigned, the value of which represents the strength
of the connection in between. As stated previously, since the
actual data is stored within the template (or centroid) vector ,

2Instead of the template vector ttt, we hereafter use the notation of centroid
vector ccc for convenience.

3Within the general scheme of kernel memory [41], not only unidirectional
but also bidirectional LW connections are considered. In such a case, we may
assign different values for w and w . However, for simplicity, we assume
w = w throughout this paper.



734 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

Fig. 2. Pattern classifier based upon distinct SSKM networks (for generalM -class problems)—each kernel network is responsible for a particular class.

the change in the value of the LWs does not affect the data stored
within the template vector at all.

Moreover, unlike traditional layered-type neural networks,
there is essentially no structural constraint, e.g., any sparse or
lateral connections are allowed, while modeling the “dense”
structures similar to correlation matrix memory or two-dimen-
sional (2-D)-map retina-like models such as by SOFMs is also
possible, by effectively setting the addressing pointers of a KU
(for a thorough discussion, see [41]). Nevertheless, within the
SSKM context, both the number of neurons (kernels) and the
weight connections are dynamically varied during the learning
(or construction) phase without introducing any structural con-
straints in this paper, as will be described in Section II-B. Then,
as justified in the simulation study to be given later, it is also
noted that, due to the presence of lateral connections, a reason-
able classification performance can be preserved in the case of
noisy data.

In another respect, it is said that SSKM lies between the sym-
bolic connectionist models and ANNs, while each node (kernel)
can exhibit generalization capability to a certain extent. In con-
trast, the self-structuring memory does not inherently involve
the aforementioned numerically oriented problems, i.e., long
and iterative training or the associated numerical instability, un-
like conventional ANN models.

B. Construction of Distinct SSKM Networks

In this paper, we will exploit a simplified version of the LW
update scheme proposed in [40] and [41] in order for reduction
in the degree of freedom in the parameter setting, as well as for
the analytical tractability in the behavior of the kernel networks
within the SSKM.

In [42, p. 62], Hebb postulated that “When an axon of cell A
is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased.” Eventually, within the SSKM
context, the following two conjectures can be drawn for simul-
taneous pattern classification and association.

Conjecture 1: When a pair of kernels and
in SSKM are excited repeatedly,4 a new LW between

and is formed.
Conjecture 2: When a kernel is excited and one of the
LWs is connected to the kernel , the excitation of
is transferred to via the LW . Then, if is not
excited, the activation of is recalculated by the relation

(3)

In this paper, Hebb’s original postulate of the increase in terms
of the amount of connections among cells is not considered for
keeping the structural as well as analytical simplicity, though
the implementation may lead to a more flexible data representa-
tion and thereby complex and interesting behaviors of the neural
memory can be observed. Moreover, to build robust pattern clas-
sifiers, we here implicitly exploit the “supervisedness,” i.e., the a
priori knowledge that each pattern vector in the training data set
always comes with the corresponding class label. Thereby, in-
stead of a single and large scheme of kernel memory [40], [41],
a multiple number of distinct SSKM networks responsible for
the respective classes will be constructed. (In other words, the
LW connections across the SSKM networks are not allowed in
this paper.) This strategy not only can greatly alleviate the com-
putational load (i.e., the search for excited kernels during the
construction) but also avoids the risk of generating connections
among the KUs with different class labels and possible resul-
tant misclassifications, in comparison with the original single
and large approach in [40] and [41]. Then, the simplified algo-
rithm to construct the th SSKM network is
given as follows.

Constructing an SSKM Network

Step 1) Initially, there is only a single kernel in the
th network , with the template

vector identical to the first input vector presented
( ; i.e., the first pattern that falls in class in
the training data set), namely, .

4In this paper, the repetitive excitations are not considered for simplicity.
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Step 2) For to {number of input data to be presented
(i.e., all the training patterns that fall in class )},
do the following.

Step 2.1) Calculate all the activations of the kernels
in the th SSKM network by the

input data , [as given by (2)]. Then, if

(4)

where is given a certain threshold, the
kernel is excited. For all the nonexcited
kernels by the direct input , check if the
excitation of kernels via the LWs occurs,
by following the principle in Conjecture 2.
Then, mark all the excited kernels.

Step 2.2) If there is no kernel excited by the input
vector , add a new kernel into the
network (i.e., ), with setting its
template vector . Otherwise,
if there are no LWs between the pairs
of the excited kernels, establish new LW
connections among all the excited kernels.

Then, the previous algorithm is repetitively applied to construct
a total of distinct SSKM networks for an -class pattern
classification task.

Note that, although the manner in the addition of the KUs in a
single kernel network exactly follows the principle of resource
allocation network (RAN) [26], the difference between RAN
and SSKM still exists, since, within the SSKM, lateral connec-
tions among the Gaussian KUs can be established, where appro-
priate [i.e., in Step 2.2), due to Conjectures 1 and 2], in order
to consolidate the pattern space spanned during the construc-
tion phase. To describe this, Fig. 3 illustrates the pattern space
formed by a pair of Gaussian KUs and 5 connected via
the LW in between. As in the figure (and under the assump-
tion that , for convenience), when a pattern presented is
located at point B in the pattern space, both the KUs and
will be activated simultaneously, since the point is within the in-
tersection spanned by these two Gaussian KUs. (Thus, if there
is such simultaneous activation, a new LW between these
two KUs will be formed, if it does not exist yet, by following
Conjecture 1.) Then, consider the case where the LW between

and is already formed and another pattern which locates
at point A in the space (i.e., outside the region covered by )
is presented. In conventional kernel-based networks (i.e., such
as GRNNs/PNNs), while only the local space spanned by
is considered, the concatenated region covered by both and

represents a local pattern space within SSKM. This implies
that the simultaneous activation of adjacent kernels (i.e., con-
nected via the LW in between) and, thereby, the concatenated
region can represent a more precise structure of the local pattern
space (i.e., in shape wise), in comparison with that spanned by a
single kernel with a larger radius. (In this manner, the extension
to more than two simultaneous activations is straightforward.)

5Note that, for convenience, the superscript n representing a particular class
is omitted within this paragraph for denoting both KUs and LWs.

Fig. 3. Illustrative example of the pattern space spanned by a pair of Gaussian
KUs K and K connected via the LW in between.

C. Testing Phase

For the testing, we also require to configure the mixture of
kernel networks so as to yield the final outputs (i.e., the clas-
sification results). Then, as in Fig. 2, we here employ an ordi-
nary “winner-takes-all” scheme for yielding the classification
results. In summary, the testing procedure by means of the dis-
tinct SSKM networks is given as follows.

Summary of Testing the SSKM

Step 1)
• Present the input data to all the SSKM

networks (i.e., ) and compute
the activations of all the KUs by (2) within all
the networks.

• Check also the activations via the LWs of
(if established during the construction phase),

, by following the
principle in the aforementioned Conjecture 2
[i.e., using (2)–(4)].

• Mark all the excited kernels.
Step 2)

• Obtain the maximally activated kernel
among all the marked kernels within the SSKM,
i.e.,

(5)

where the index denotes the th KU of the
marked kernels in Step 1).

• Then, the final classification result by the SSKM
is obtained by simply referring to the value of

.

III. EXTENSION OF SSKM TO MULTIDOMAIN

PATTERN ASSOCIATION

Now, provided that a multiple number of pattern classifiers
responsible for the respective domain data are independently
constructed by using the algorithm described in Section II, we
extend the idea of the LWs between the KUs to that of cross-
domain LWs.

Conjecture 3: If the KUs , in the th dis-
tinct network of SSKM ( : number of do-
mains) are excited simultaneously (and repeatedly6), new
cross-domain LWs among such KUs are formed.

6In this paper, the repetitive excitations are again not considered for sim-
plicity.
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Fig. 4. Simultaneous dual-domain (i.e., N = 2) pattern associator and classifier based upon distinct SSKM networks and an illustrative example of the cross-
domain LWs.

Then, via such cross-domain LWs, associative pattern classifi-
cation can also be performed; to simplify the story, consider the
situation where only two SSKM-based pattern classifiers as il-
lustrated in Fig. 4 , e.g., one for a particular auditory
domain data (i.e., SSKM 1) and the other for visual (i.e., SSKM
2), are constructed, as well as the cross-domain LWs between
some of the KUs among these classifiers are established (e.g.,
the LW between in SSKM 1 and in SSKM 2, ,
besides the LWs between the KUs within the distinct networks),
within the SSKM principle.7 Then, a particular set of auditory
pattern data (i.e., given by ) can activate not only some of the
KUs within the kernel network(s) of one domain but also those
in other domain(s), i.e., visual; the activation of some KUs in the
visual part occurs without the presentation of any visual input
data to SSKM 2

in SSKM in SSKM (6)

where denotes the network ID of SSKM 1/2,
is the cross-domain LW value, , and .

Thereby, with this configuration, “association” of pattern data,
or in a more cognitive sense of memory association, can be mod-
eled. [However, note that, as given by (6), establishment of the
cross-domain LWs is restricted between the networks in SSKM

and with the same network IDs in this paper.]

7Generalizing the notion of cross-domain LWs to the case where N > 2 is
straightforward.

Related to the aforementioned cross-domain pattern associa-
tion, one of the active areas of research has been data/sensory
fusion by exploiting a mixture of experts (see, e.g., [43]–[46]).
However, the objective here is rather different from these pre-
vious works; since their works are mostly targeted at the im-
provement in classification accuracy of a particular object by
(somehow) combining the outputs obtained from the classifiers,
which are responsible for the respective data domains and inde-
pendently constructed using (normally) conventional layered-
type neural networks, generally no lateral (or cross)-connec-
tions between the pattern classifiers are considered. Hence, the
associative data processing such as i) the activation from in
SSKM 1 with the input and ii) the subsequent activation from

and/or in SSKM 2 via the cross-domain LWs in between
(i.e., without giving the input ), as in Fig. 4, is not generally
considered in conventional data/sensory fusion or other ANN
approaches. Moreover, since establishment of such cross-do-
main links and subsequent activation transfer via such links does
not always occur but rather is dependent upon the input data
presented, the system comprising the SSKM can, e.g., flexibly
reconfigure its task-planning mechanism to cope with the in-
cessantly varying surrounding environment using multidomain
data.

IV. SIMULATION STUDY

In the simulation study, three data sets extracted from three
public handwritten/spoken digit databases, i.e., OptDigits [47],
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TABLE I
THREE DATA SETS USED FOR THE PATTERN CLASSIFICATION TASKS

TABLE II
MINIMUM AND MAXIMUM DISTANCES BETWEEN ALL THE PAIRS OF PATTERNS

IN THE TRAINING DATA SET COMPUTED FOR THE THREE DATA SETS

PenDigits [48], and speech filing system (SFS) [49], were
used; for the former two, the data set contains a subset of
the pattern data extracted from the corresponding databases
(under the same names) obtained from the University of Cal-
ifornia at Irvine (UCI) Machine Learning Repository. The
original databases for both the OptDigits and PenDigits contain
some thousands of handwritten digits ready for performing
optical/pen-based recognition tasks. For the third (SFS), the
data set was composed by the feature data obtained using the
original SFS database for spoken digit voice recognition tasks.
For the pattern classification tasks, the feature extraction was
based upon a combined linear predicting coding (LPC) and
mel-cepstral analysis, which is a commonly used scheme for
speech coding (see, e.g., [50] and [51]). Then, a more detailed
description of the three data sets used is given in Table I.

For the (regular) pattern classification tasks, the three
methods— -nearest neighbors ( NNs, ),
SVMs, and the method based upon the distinct SSKM net-
works—were used. Then, a performance comparison was made
between the three methods.

For the SVMs, a simple technique for multiclass classifica-
tion tasks was introduced: a total of ten distinct SVMs, each of
which acts as a binary pattern classifier (i.e., to judge whether
the input data given falls into one particular class or not), were
constructed, and then, similar to the SSKM approach, the or-
dinary “winner-takes-all” scheme was applied to generate the
final classification results

Final result by SVMs (7)

where is the output obtained from the
th SVM, when a pattern vector was presented.

For the SSKM, simultaneous activations of only the nearest
neighbors (i.e., excluding the subsequent activations by “neigh-
bors of neighbors” due to the activation transfer via the LWs)

TABLE III
SUMMARY OF THE PATTERN CLASSIFICATION RESULTS—WITH THE

PARAMETERS CHOSEN AFTER PERFORMING FIVEFOLD CV

were considered for the purpose of analytical simplicity in the
simulation study.

A. Choice of the Radii for Gaussian Response Function

For both the SVMs and SSKM, the Gaussian response func-
tion given in (2) was chosen as kernel functions. Then, selection
of the radii gives a significant impact upon the performance.
Although the choice is normally made by trial and error, it has
been empirically shown that a unique setting for chosen within
the following range can, as a rule of thumb, still yield a reason-
able generalization performance [11], [40], [41]:

(8)

where the values and correspond to the minimum
and maximum distance between all the pairs of patterns in the
training data set, respectively. For the three data sets, both the
minimum and maximum distances are computed as shown in
Table II.

B. Classification Results

The results and the performance comparisons for the regular
pattern classification tasks are then summarized in Table III.
Note that, for both the SVMs and distinct SSKM networks,
all the classification rates shown were computed based upon
the fivefold cross-validation (CV) data sets (see [3] and [52]);
the original training set was first divided into five subsets (i.e.,
one for validation and the rest for training the classifiers), and
the parameters which yielded the highest score and then min-
imum number of nodes [i.e., the number of support vectors
(SVs) for SVMs, whereas that of KUs for SSKM] during the
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Fig. 5. Comparison of the classification rates (left) and total number of KUs generated within the distinct SSKM networks during the construction phase (right),
with varying the value � .

CV were used to construct a pattern classifier for testing (i.e.,
using the third data set). During performing the CV, the value of
the radius was varied within the range given by (8) for both
the SVMs and SSKM. For the SVMs, another parameter, i.e.,

: upper bound for the weight coefficients,
was also varied, whereas as given in
(4) for the SSKM during the CV (then, the degree of freedom
was eventually two for both the SVMs and SSKM). For all the
simulations in this paper, the value of the LWs for the SSKM
was fixed as [i.e., in (3) and (6)] and unaltered.
Then, the classification results given in Table III were obtained
using the testing data set with the networks constructed with
the aforementioned two parameters (i.e., and for the SVMs,
whereas and for the SSKM) chosen during performing the
CV.

C. Choice of the Activation Threshold Factor

We then investigated the performance of SSKM by varying
the parameter with fixing the other, i.e., , to the values
found best by performing the fivefold CV for the respective data
sets (as in Table III; 3.8, 1.0, and 5.4 for the OptDigits,
PenDigits, and SFS data sets, respectively. In addition, note that
the simulation results shown hereafter are those using the full
version of the training sets). Fig. 5 compares both the classifi-
cation rates (left) and number of KUs generated (right), when
varying only the value . As in the figure, it is observed that,
while the number of KUs generated can be greatly varied by the
factor , the overall classification rates still remained satisfac-
tory, without any catastrophic degradation for all the cases. In
particular, it is notable that, while a total of 697 KUs were re-
quired for the PenDigits data set with the setting of
(as in Table III), a similar performance (96.5%) can also be ob-
tained by the setting with a much smaller number of
the kernels (i.e. 256 in this case, whereas 697 as in Table III).
This observation indicates that, unlike SVMs, the number of
KUs can be controlled reasonably by the factor within the

proposed SSKM approach, with introducing no serious perfor-
mance degradation.

D. Discussion

Note that, as shown in Table III, the classification rates ob-
tained using the SSKM approach were virtually identical to
those by the SVMs for all the three data sets, while the number
of SVs/KUs varied greatly with the choice of the parameters
during the simulation. Nevertheless, for the SVMs, the perfor-
mance was obtained at the expense of rather complex mathe-
matical operations, i.e., 1) multiple presentation of the whole
training data (i.e., requiring times of the presentation
by the SVMs, whereas just once for the SSKM approach) and
2) iterative operations for relatively large matrices due to the
utility of such as quadratic programming, during the construc-
tion (training) phase, for the sake of the convergence rate/im-
proved accuracy in the classification rate.

In this view, it is generally considered that, as a rule of thumb,
the training time required for SVMs is much more than that
of a one-pass algorithm such as SSKM, while the testing time
can be less8; i.e., if Gaussian kernels are chosen for the SVMs,
the structure of each SVM is equivalent to that of an ordinary
RBF-NN, requiring only forwarding the activation of the hidden
to the output layer, while a further step is still required in the
case of SSKM in order to check the existence of/compute the
activation transfer via the lateral connections among the KUs.
Hence, it is considered that the testing time for SSKM is largely
dependent upon the number of LWs among KUs in each distinct
network generated during the construction.

In comparison with RAN, it is said that the training time for
SSKM is much less than that for RAN; in RAN, every time a

8For kNNs, only the computational resources required for the testing are con-
sidered; in kNNs, since all the training patterns must be held during the testing
phase and since the testing is achieved by simply finding the k-nearest pattern
vectors among the training vectors, the testing time is exactly dependent upon
the size of the training data set and, thus, normally longer than all the other al-
gorithms used in the paper. For the detail, see, e.g., [4].
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Fig. 6. Variation in the total number of LWs generated during the construction phase (left) and that of adjacent activations of KUs occurred during the testing
phase (right), due to the factor � .

Fig. 7. Variation in the classification errors using training/testing data sets during the construction phase.

new unit is about to be added to the network, the computation
of minimum distance between the incoming training pattern and
all the existing units in the network is required, while, within
SSKM, such computation [i.e., corresponding to the judgement
if the KU is activated by (4)] is required only for the KUs within
a particular SSKM network with the same class ID as a new
training pattern is given. Moreover, unlike RAN, each SSKM
network responsible for the corresponding class is constructed
on a modular basis and distinct from others. In other words, this
manner of construction is equivalent to that of the subnetworks
within a PNN, and, hence, accommodation of new classes [25]
can be naturally achieved, the capability of which is also desir-
able in general pattern classification problems.

E. Variation in the Number of LWs

Next, as observed in Fig. 6, the total numbers of LWs gener-
ated within all the distinct SSKM networks during the construc-

tion phase and occurrences of adjacent kernel activations during
the testing phase were relatively higher for smaller values of .
In contrast, during the construction phase, the number of LWs
was steadily growing, besides the number of KUs, as shown in
Fig. 8, while the training/testing errors were almost consistently
decreasing in Fig. 7. However, it is also observed that the ten-
dency of steady growing in the number of LWs is not eminent
for the SFS but for the OptDigits and PenDigits data sets.

These results then indicate that the number of patterns is in-
sufficient to consolidate well the pattern space, by examining
the longer vector length (256) compared to that of the other two
(i.e., 64 for OptDigits and 16 for PenDigits) as in Table I.

F. Robustness to Varying the Presentation Order of
Training Patterns

Since the construction of SSKM networks is based upon a
one-pass algorithm, we investigated the impact upon the clas-
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Fig. 8. Variation in the total number of KUs (left) and LWs during the construction phase (right).

TABLE IV
CLASSIFICATION RESULTS OF SSKM—USING THE SUBSETS OF TRAINING

DATA WITH VARYING THE PATTERN PRESENTATION ORDER

sification performance where the presentation order of training
patterns was varied. For this, we used five different subsets of
the original training data with randomly sorted orders. Then, the
total number in each subset was set only to one-sixth of the orig-
inal (i.e., 200 for the Opt/PenDigits, whereas 90 for the SFS),
while the number of patterns in the testing set was unaltered.
This was to simulate a rather hard situation where only an in-
complete set of training patterns is available. For the SSKM,
while the radii values were chosen the same as those found by
performing the fivefold CV (in Table III), the setting
was used for all three data sets (also for the simulation study of
the noisy training data to be described in Section IV-G). Table IV
shows both the testing error rates and number of KUs generated
during the construction.

As shown in Table IV, since the error rates as well as the
number of KUs generated remained almost intact, it can be
empirically confirmed that the impact upon the overall perfor-
mance of the SSKM due to varying the presentation order of the
training pattern vectors is negligible.

TABLE V
VARIATION IN THE TESTING ERRORS WHERE THE NUMBER OF NOISY

PATTERNS WAS INCREASED FROM 0 TO 80(40)

G. Robustness to Noisy Training Patterns

Next, we investigated the robustness to noisy training pat-
terns. To examine this, the total number of training patterns was
again reduced to one-sixth of the full version, and some of the
patterns in the training data sets were replaced by noisy pat-
terns. Then, the original testing data sets were used for testing.
Tables V and VI compare the testing error rates and numbers
of SVs/RBFs(for RAN)/KUs and LWs obtained by the SVMs,
RAN, and SSKM, respectively, where the number of noisy pat-
terns was increased from 0 to 80(40 for the SFS) with a step size
of 20 (10 for the SFS). In order to see how the lateral connec-
tions are effective within the SSKM, we also compared the re-
sults of the SSKM with (SSKMb)/without LWs (SSKMa) (i.e.,
by simply setting , ). For RAN [26], the degree of
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TABLE VI
VARIATION IN THE NUMBER OF SVs/RBFs (FOR RAN)/KUs LWs, WHERE THE

NUMBER OF NOISY PATTERNS WAS INCREASED FROM 0 TO 80(40)

freedom is generally higher than SVM and SSKM; there are six
parameters to fix during the construction phase (while only two
or three for both SVM and SSKM). Then, we chose almost the
same values as those employed in [26], i.e., , ,

, , , and .
As shown in Table VI, the numbers of SVs are much higher

than those corresponding to the other three algorithms for all the
cases, while the error rates by SVMs are relatively lower than
the others. Similarly, the lower error rates were also achieved
by RAN for both the OptDigits and SFS cases, with relatively
small numbers of RBFs. However, this can be expected due to
optimization of other parameters during the construction (i.e.,
adjusting the center positions and radii values for the RBFs, as
well as the weight connections between the hidden and output
layers by applying a gradient–descent method). Besides this, al-
though the most memory-expensive factor for all the four al-
gorithms (i.e., RAN, SSKMa, SSKMb, and SVMs) is in prac-
tice considered to be the support/centroid vectors, other mul-
tiple-valued parameters are also required to be held for both
SVMs and RAN; i.e., unlike SSKM, both SVMs and RAN even-
tually yield a fully connected RBF network (i.e., if Gaussian
kernels are used). Then, the independent radii values for RAN
and weight values between all the hidden and output units for
both SVMs and RAN must be preserved during both the con-
struction and testing phase. In contrast, for the SSKM in this
paper, only the LW values (i.e., for the partial/sparse lateral con-
nections among the KUs) are essentially required to be stored,
besides the centroid (or template) vectors.

Then, by comparing the results of SSKMa with SSKMb as
in Tables V and VI, it can be empirically confirmed that the
presence of LWs somewhat contributes to preservation of the
reasonable classification performance in noisy situations, while
keeping a relatively small number of KUs as in Table VI. This
is particularly true for the cases of OptDigits and PenDigits, as
the number of noisy patterns is increased from 40 to 80.

H. Multidomain Pattern Association Tasks

The associative pattern classification task in this paper was
designed to imitate the situation where a specific voice sound
(auditory) input to a particular area of memory excites not only
the area responsible for the auditory modality but (in parallel)
the visual counterpart (i.e., dual-domain pattern association). As
aforementioned, this is then somewhat relevant to the issue of
modeling associations between different cognitive modalities or
in a more general context of memory association.

To simulate the memory association, we used the SFS data set
to represent the auditory part of the memory, while the PenDigits
was used for the visual counterpart. The composite network
structure as in Fig. 4 was formed using the training set of both
the SFS (for SSKM 1) and a subset of PenDigits (for SSKM
2; with the same number of training patterns as the SFS, i.e.,
540). During the training, not only the LWs between the corre-
sponding units in a single distinct SSKM network but also those
across SSKM networks (i.e., cross-domain LWs) were thus es-
tablished (with the aforementioned constraint that only the KUs
in SSKM 1 and 2 with the same network IDs were allowed to
be connected, where appropriate). Then, in the simulation study,
we observed how each input pattern in one domain can activate
the KUs within the other domain via the cross-domain LWs,9

using the corresponding testing data set (i.e., the total number of
testing patterns was set to 360 for both the SFS and PenDigits).

For imitating such memory association, it is intuitively
considered that the presentation order of training patterns can
greatly affect the formation of the associative links. In the
simulation study, however, we resorted to an artificial data
presentation manner, in order to represent a simple but clearly
observable manner of establishing pattern associations between
the two different modalities within the SSKM. Then, the pat-
tern data were presented alternatively across the two training
datasets; viz., the presentation of the first pattern for class

in the SFS to SSKM 1, then, the first pattern
in the PenDigits for the same class (i.e., digit) as the SFS to
SSKM 2, followed by the presentation of the second pattern in
the SFS to SSKM 1 and by that in the PenDigits to SSKM 2

Tables VII and VIII summarize the simulation results of
cross-domain pattern association. In Table VII, the behavior
was analyzed by varying from 0.5 to 0.9 for the SSKM of the
PenDigits part only (SSKM 2), while the fixed value
was used for the SFS part (SSKM 1), during the construction
phase. Similarly, in Table VIII, the behavior was analyzed by
varying the for the SFS part (SSKM 1), whereas the same
fixed value for the PenDigits part (SSKM 2) was
used. The upper parts of Tables VII and VIII show the numbers
of occurrences where the testing patterns in one domain (i.e.,
SFS/PenDigits) induced the excitation of KUs in other domain
via the cross-domain LWs (i.e., PenDigits/SFS) and where they
resulted in correct/incorrect association. In contrast, the lower
part in each table shows the total number of i) KUs, ii) LWs
generated within a single SSKM network, and iii) associative
LWs so generated during the construction phase.

9Not to mention, such a network configuration is not possible by the SVMs or
RAN, since, as aforementioned, the resulting network structures are equivalent
to ordinary fully connected RBF-NNs and cannot be used for performing such
pattern association tasks as in this paper.
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TABLE VII
SUMMARY OF THE RESULTS FOR THE CROSS-DOMAIN PATTERN ASSOCIATION

TASKS—WITH FIXING THE PARAMETERS FOR THE SFS DATA SET

TABLE VIII
SUMMARY OF THE RESULTS FOR THE CROSS-DOMAIN PATTERN ASSOCIATION

TASKS—WITH FIXING THE PARAMETERS FOR THE PENDIGITS DATA SET

As shown in Tables VII and VIII, it is observed that the
number of patterns in one domain which induced the activa-
tions of the KUs in the other domain was greatly varied by
the factor (i.e., from no occurrence to 275, for a total of
360 testing patterns). In addition, while the number of the LWs
remained relatively small, the number of the associative LWs
so generated was consistently large for all the cases. This is
naturally considered, due to the manner in presenting the input
(training) patterns across the two domains (as aforementioned),
and, thereby, the lateral connections between SSKM 1 and 2
became much denser than the regular connections (i.e., within
each SSKM network). However, despite the large number of

the cross-domain connections (i.e., the associative LWs), the
number of activations from the KUs in SSKM 2 via the asso-
ciative LWs (i.e., SFS PenDigits) was relatively consistently
smaller than that in SSKM 1 (i.e., PenDigits SFS), whereas
the number of incorrect pattern associations was relatively
larger as becomes small. This may also indicate that, as
observed in the simulation results of the regular pattern clas-
sification tasks in Section IV-E, the coverage of the pattern
space for SFS is insufficient (i.e., due to the insufficient number
of training patterns used) to induce the simultaneous activa-
tions for the correct associations, in comparison with that for
PenDigits.

V. CONCLUSION

In this paper, a novel kernel-based constructive approach
using distinct SSKM networks for simultaneous pattern classi-
fication and multidomain association tasks has been proposed.
In the simulation study, the following has been confirmed.

1) Since the construction of classifiers is based upon the ap-
plication of the Hebbian-motivated simple one-pass incre-
mental training scheme to each SSKM network, it requires
much less computational complexity than that of SVMs
and RAN (as justified in Section IV-C).

2) Unlike SVMs, generation of redundant KUs can be sup-
pressed by adjusting the factor , while maintaining a
reasonable classification rate.

3) As the construction is modular-based (i.e., distinct SSKM
networks are constructed one by one, as in Section II-B),
it is hence considered that not only ordinary online incre-
mental training but also accommodation of new classes as
in PNN [25] is naturally performed.

4) The pattern classifiers based upon distinct SSKM net-
works can be straightforwardly extended to those capable
of processing multidomain data simultaneously, i.e., per-
forming multidomain pattern association tasks, within a
single framework of exploiting the concept of LWs, which
was not generally considered within the traditional ANN
context.

The four aforementioned properties of SSKM are then con-
sidered to be the keys for exploring various new as well as ver-
satile application domains. One such application would be to
develop a novel connectionist model for simulating the faculty
of human language acquisition or other cognitive functionalities
that can evolve itself by experiences and simultaneously per-
form pattern classification/association of multidomain sensory
data, which is currently under investigation by the authors.
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