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Abstract: This study proposes a novel connectionist model that explains a solution to Pinker's statement about Berko's “wug-test” 
in terms of the interactive data processing between the short-term/working memory and long-term memory modules within the 
artificial mind system. Pinker challenged the Rumelhart and McClleland's pattern association model by enumerating several 
points where the model failed to simulate the human language faculty.  We here demonstrate how the artificial mind system 
works and simulate the acquisition. This may be able to suggest a new approach to the language acquisition study with a scope of 
the artificial intelligence (artificial mind), while providing solutions to the problems that Pinker raised. 
 
1  Introduction 
The approaches in terms of artificial intelligence (AI) have provided useful tools towards elucidating the 
various faculties of human language.  Then, since we can set up for the condition of the artificial devices 
to a great extent, whilst assuming more precisely a situation than the case of real human subjects, before 
performing the actual experiments, not only can we repeat exactly the same experiments but also 
consistent results are expected to be obtained.  In general, it is therefore considered that investigating 
then comparing the results so obtained with real examples can give another significant insight in the study 
of language acquisition. 
 
2  Language acquisition by connectionist models 
Connectionism, or artificial neural networks (ANNs), is a branch of AI study, and, within the 
aforementioned principle, the research in the ANN field has also been conducted to simulate the faculty of 
human language acquisition by developing a model and investigating its behaviour through the extensive 
use of machinery. 

About two decades ago, one of the influential connectionist accounts was proposed by Rumelhart and 
McClleland; i.e. the so-called ‘pattern association’ model (Rumelhart, et al. 1986).  They attempted to 
explain the inflection of verbs in past tense from the original forms, by using a simple two-layered neural 
network (or, multi-layered perceptron neural network, MLP-NN).  However, their model has been 
claimed not to be appealing both linguistically and computationally; from a linguistic point of view, the 
model does not generalise well some novel regular verbs (Pinker 2000; Zalta 2006), whilst within the 
ANN context it is now well-known that tuning of the network parameters in MLP-NNs (i.e. by the 
so-called back-propagation algorithm) quite often involves numerical instability-related problems and thus 
that to make MLP-NNs work reliably for a particular task domain (i.e. even for a simple pattern 
recognition task) is not a straightforward job; for example, it is generally hard to learn new patterns (or, in 
other words, incremental learning) without affecting the previously stored knowledge by MLP-NNs, 
unlike humans. 
 
3  Artificial mind system (AMS) 
In the article (Hoya 2005), Hoya proposed the complete holistic model of artificial mind system (AMS).  
Macroscopically, AMS can be viewed as an input-output system and consists of a total of 14 
(loosely-distinct) modules: attention, emotion, explicit and implicit LTM, input: sensation, instinct, 
intention, intuition, language, perception (i.e. the secondary output), primary output (such as action and 
endocrine), semantic networks/lexicon, short-term/working memory (STM/WM), and thinking module, 
the notion of which generally agrees with the psychological ‘modularity principle of mind’ (Fodor 1983; 
Hobson 1999).  Then, he proposed that the respective modules and their mutual data processing in AMS 
can be represented by using a new form of connectionist model, named kernel memory (KM). 
 



3.1  Kernel memory – a novel connectionist model 
As in most of conventional ANN models, kernel memory consists of a set of nodes and the mutual 
connections (i.e. called ‘link weights’).  However, the notion of nodes as well as the weighted 
interconnections in kernel memory is rather different from that of conventional ANNs; the following 
summarises several important aspects of kernel memory: 

i) In kernel memory, a node (i.e. kernel unit) can process not only a single but also multiple input 
values at a time, depending upon the configuration, and transforms the values into its output 
value(s) by applying either a linear or non-linear function; if a Gaussian response function is 
chosen as the non-linear transformation of multiple input values, a node is equivalent to a radial 
basis function (RBF); it yields a similarity measure between the input given and the centre 
position (as well as the width; that is, an RBF can be regarded as an element of memory system; 
hence the term ‘kernel memory’).  Thereby, a single node can by itself perform (locally) pattern 
matching; if the value given by the similarity measure exceeds a certain threshold, it is regarded 
that the input pattern matches the data internally stored (this is also concretely justified within the 
pattern recognition/signal processing context; cf. Hoya 2004; 2005). 

ii) The link weight between a pair of kernel units simply represents the strength of the connection in 
between, and activation of one kernel unit may invoke that of the other(s) by its transfer via the 
link weight, even though there is no actual input to the other corresponding unit(s).  Then, unlike 
ordinary RBF networks (i.e. another commonly-used ANN model), lateral connections between 
RBFs (kernel units) are allowed; this manner of connection essentially removes the topological 
constraints in the network structure, whilst the MLP-NNs or RBF networks are based upon a strict 
layered structure.  Moreover, such a manner also allows the connection between the kernel units 
with different domain inputs, which is not generally considered within the traditional ANN 
context; for example, an adaptive associative memory system that simultaneously deals with both 
auditory and visual input pattern data can be developed by kernel memory in a single framework 
of learning (Hoya 2004; 2005).  Thus, in the case of kernel memory, knowledge is not 
represented in a mere distributed form (as in MLP-NNs) but rather by the nodes themselves (i.e. 
where each node may exhibit a generalisation capability) and their associations, the principle of 
which also inherits the important property of traditional symbolic approaches. 

iii) The number and internal parameters of kernel units (i.e. both the centre positions and widths in 
the case of RBFs), as well as the weighted connections in between, can be dynamically varied 
according to the input data given to the network during the learning phase.  For example, if we 
apply a simple Hebbian-motivated rule (to be described next) to configure the kernel memory 
(Hoya 2004; 2005), the network is self-organised by adding new (or otherwise removing 
unnecessary) kernel units and then by establishing/updating (or otherwise removing) the link 
weights in between, where appropriate (rather than starting off with a totally fixed and 
fully-connected architecture as in MLP-NNs).  Hence, a more life-like network representation is 
possible in terms of kernel memory. 

The points i) and ii) above correspond to the Hume’s two laws of associations – similarity (i.e. when 
RBFs are chosen as kernel units) and contiguity (i.e. modelled by means of the link weight connections 
between kernel units) (Pinker 2000).  On the other hand, related principally to the case of RBF kernel 
units, a neuropsychological justification was made in the work of 3D-vision study (Poggio and Edelman 
1990), in which an RBF can be regarded as a plausible model of receptive field.  The concept is also 
affirmative in light of the neuro-physiological study by Hubel and Wiesel (i.e. in terms of macaque 
monkey’s visual cortex, Hubel and Wiesel 1977). 
 
3.2  The Hebbian-motivated learning rule 
As aforementioned, the Hebbian-inspired learning rule can be used to self-organise the kernel memory: 
suppose that we assign each kernel unit as an RBF and want to self-organise and use the memory for a 



particular pattern recognition task.  Initially, there is only a single kernel unit in the memory space, i.e. a 
kernel unit K1 with its centre position (in a high dimensional space) identical to the first pattern in the 
training set (and the auxiliary buffer attached to it to the corresponding class ID).  In presenting the 
second training pattern, if K1 does not activate (i.e. the value given by the similarity measurement between 
the first and second pattern exceeds a certain threshold), then add a new kernel K2 with its centre position 
to the second pattern (and auxiliary buffer set to the corresponding ID).  Then, for the third training 
pattern, the following three cases are considered; i.e. i) K1 and K2 are simultaneously activated, ii) either 
K1 or K2 is activated, iii) neither K1 nor K2 is activated.  For each case, the following rules are 
respectively applied: 

i) Establish a new link weight between K1 and K2.  At later presentations, if this occurs repetitively, 
increment the weighting value with a small amount. 

ii) Do nothing (since the pattern space is already covered). 
iii) Add a new kernel unit K3, with both the centre position and auxiliary buffer identical to those 

corresponding to the third pattern.  
The manner of adding new kernel units and establishing the 
link weights continues until all the training patterns are 
presented to the kernel memory.  In contrast, we may also 
introduce a shrinking rule – if the simultaneous (or 
subsequent) activation of Ki and Kj does not occur during a 
certain period of time, decrement the link weight value in 
between.  Moreover, if there are some kernel units that 
have not activated for a longer period, we may remove not 
only the link weights but also such kernel units from the 
memory space. 
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It should be noted that use of the Hebbian-motivated rule 
described above does not involve any arduous and iterative 
approximation procedure (as in the back-propagation 
algorithm) at all and thereby that simple incremental 
learning is possible. 

With the fundamental tenets given so far, we will next 
show that AMS with kernel memory can yield a reasonable 
basis to explain the faculty of ‘artificial’ language 
acquisition in terms of the solution to the Berko’s 
“wug-test” (Berko 1958). 
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 ig. 1: Representation of the plural form WUGS by 

eans of kernel memory  
 
4  Solution to the Berko’s “wug-test” 
Pinker suggested that, for a similar problem to the wug-test, that is, inflection of verbs, the acquisition 
system must implement a hybrid of memory association (i.e. for irregular verbs) and rule-based 
mechanism (i.e. for regular verbs).  Note that the wug-test only shows the visual result, and we will focus 
here on a visual sensory modality only.  (Within the AMS context, a similar scenario for the auditory case 
is possible and considered to be relatively straightforward.  Nevertheless, we are planning to propose it 
elsewhere in near future.) 
 
4.1  Prerequisite 
Suppose that i) each node in Fig. 1 is equivalent to a population of kernel units (with interconnections in 



between, where appropriate; or, a sub-kernel memory self-organised by e.g. the aforementioned 
Hebbian-motivated rule) representing a single stem of a particular data domain (i.e. a letter, word, or other 
concept) and that ii) AMS has already formed the overall composite network structure as shown, within 
the LTM in the previous acquisition/learning phase (i.e. innate or not).  For convenience, let us also 
assume here that only RBFs are considered as the kernel units in each population (or node in Fig. 1).  
Then, since, as described earlier, each kernel unit performs a local pattern matching within the 
corresponding data domain, a collection of such matching results then the subsequent operation (i.e. such 
as max op.) leads to the overall pattern recognition result of a particular domain.  Next, we will show 
how AMS processes the spelling pattern of a letter/word. 
 
4.2  Pattern recognition of a single letter 
First, AMS performs (visual) acquisition of the spelling pattern of a word by the sensation module.  
Second, provided that AMS has successfully performed the image segmentation/feature extraction (i.e. 
within the signal processing/machine learning context) of an entire image, corresponding to the spelling 
pattern, into separate objects (i.e. obtained as the feature patterns, corresponding to the respective letters 
‘B’, ‘I’, ‘R’, and ‘D’), the feature patterns are subsequently given as the input to all the populations of 
kernel units representing visually the alphabetic characters (i.e. as shown in an array of nodes ‘B’ to ‘W’, 
on the far left side in Fig. 1).  Then, for each letter pattern, it is considered that some of the kernel units 
within some populations can activate (i.e. if the similarity measure given by an RBF yields a value that 
exceeds a certain threshold).  Third, if we apply a simple winner-takes-all strategy, i.e. the population 
with a maximum number of the activated kernel units automatically corresponds to the pattern recognition 
result of a single letter, and the node (i.e. representing the population) will eventually emit a spike-like 
pulse. 
 
4.3  Pattern recognition of a word 
By performing subsequently the pattern recognition of each letter that constitutes the spelling pattern of 
the word, e.g. BIRD, a firing pattern consisting of the spike trains something like: 
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B’: 1 0 0 0 
I’: 0 1 0 0 
R’: 0 0 1 0 
D’: 0 0 0 1 
(within a certain period of short time); in each column above, ‘1’ or ‘0’means that a spike 
itted from the corresponding node, at a particular time instance.  Then, pattern matching 

ng pattern (i.e. given as the input) with the pattern as in the above stored within the 
el units may accordingly result in the activation of some kernel units in a certain 
esponding to a word node as in Fig. 1) and, similar to the single letter case, eventually 
f pattern recognition result at word level.  (Note that this manner of processing can also 
ity in the ordering of the letters, or the anagram problem, as pointed out by Pinker.) 

n process of the link weights 
n of word-level nodes representing the plural forms such as the BIRDS and DOLPHINS 
two ways of representing the firing patterns can be considered: e.g. the BIRDS node can 
e firing pattern representing the subsequent activations of either i) the letter nodes ‘B’, ‘I’, 
) the word node ‘BIRD’ followed by the letter ‘S’ node. 
is naturally considered that a living system prefers a parsimonious solution instead of 
lbeit regardless of its biological plausibility, in a strict sense, at neuronal/cell level), for 
 processing to adapt (ultimately) itself to the incessantly changing environment.  Thus, 
le could also be applied to the formation of both the letter- and word-level nodes within 
: for the pair of words BIRD and BIRDS or DOLPHIN and DOLPHINS, an elimination 



process of the link weights can start to occur, since the emission of a spike from the BIRD/DOLPHIN 
node is considered to be always followed by that of the BIRDS/DOLPHINS node.  Therefore, in order to 
represent e.g. the BIRDS node, the augmented firing pattern (on the left hand side in the below) 
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‘B’: 1 0 0 0 0 
‘I’: 0 1 0 0 0 
‘R’: 0 0 1 0 0 
‘D’: 0 0 0 1 0 
‘S’: 0 0 0 0 1 

ndant; it is more parsimonious and thus preferable to have instead the representation on the 
e above, since the total number of spike trains is dramatically reduced from 25(=5x5) to 
s, as shown in Fig. 1, the nodes BIRDS/DOLPHINS can eventually represent the firing 
 to the above, whilst eliminating the number of link weights, as well as internal parameters 
nding kernel units (i.e. the internal data corresponding to the firing patterns stored within 

ts).  Such process can be achieved after a sufficient amount of the repetitive processing 
ng patterns by AMS. 
e elimination process of the link weights above is discussed from a rather computationally 
int of view, its implication is rather significant, especially when one considers the actual 
f ‘artificial’ language acquisition system. 

hment of the link weights between word-level kernel units 
ion of the word kernel units, the same Hebbian-motivated rule as described in Sect. 3.2 can 
h the extra need for taking into account the time course of activation (e.g. if a certain firing 
e above appears during a short time period of time, then add a new kernel unit to generalise 
hin the memory space; cf. Hoya 2005).  Thus, it is possible that, during consolidation of 
ord nodes (i.e. BIRD, BIRDS, DOLPHIN, and DOLPHINS), as well as the cross-domain 

tween the corresponding letter- and word-level nodes (kernel units), are formed. 
t is considered that, with an appropriate pattern presentation setting, the link weights are 
lished between nouns and their plural forms and can be accordingly strengthened.  For 
resentation of both the word BIRD and its plural form BIRDS within a short time interval 
such an establishment, since this can lead to the simultaneous activations (or, more 
bsequent activations in a brief moment) amongst the corresponding kernel units.  Then, 
n applies to learn irregular forms, such as goose – geese. 

isation of the plurality – formation of super-ordinate nodes in the LTM 
odes representing letters/words, it is considered that both the super-ordinate nodes 
d ‘something is plural’ generalising the notion of plurality, as in Fig. 1, have also been 
 the consolidation of the LTM.  As shown, the super-ordinate nodes can be activated, if 
hat the visual scene consists of multiple objects, and then functions to relay the activation to 
ts connected, i.e. those representing the corresponding letters, spelling patterns of words, 
-specific patterns (i.e. the visual images of birds, dolphins, etc), and/or notions, via the 
link weights.  In other words, such a node plays a similar role in representing a certain 
n ordinary pattern recognition, for example, that can correspond to the kernel unit 
category label, within the kernel memory).  Thereby, regular inflection of a noun into the 
plural form can be eventually represented by the activation of both the super-ordinate nodes, 
 super-ordinate node ‘something is plural’ can be activated in the case of irregular nouns; in 
ese case, only the subsequent activation of GOOSE -> GEESE -> ‘something is plural’ may 
emory access in LTM. 



4.7  Processing of the unknown word WUG 
Now, let us consider a situation where AMS acquired visually the spelling pattern of the unknown word 
WUG (arrived in the STM/WM, at time t=0) and successfully performed the subsequent pattern 
recognition of the respective letters ‘W’, ‘U’, and ‘G’ and where it also processed the visual image within 
the STM/WM and detected that the visual scene is composed by multiple (bird-like) objects (t=0). 

Then, as described in the previous subsection, the super-ordinate node of ‘something is plural’ can be 
also activated (t=0), relay the activation to the other super-ordinate node ‘{noun}+S’, and it can eventually 
invoke the activation of the ‘S’ node.  Thereby, such a situation is considered where the subsequent 
activation, i.e. the activation of the node representing the unknown word ‘WUG’ within the STM/WM 
followed by that of the letter node ‘S’, occurs.  This is similar to the case of the formation of the BIRDS 
node from the BIRD node (in Sect. 4.4).  Therefore, a new node representing the plural form WUGS, as 
well as the link weights between the corresponding kernel units (t=t3), is temporally created within the 
STM/WM module, which suggests that repetitive presentation of such a pattern consolidates the firing 
pattern and eventually makes both the WUG and WUGS nodes (as well as the link weights) a part of the 
LTM within AMS. 
 
5  Conclusion 
In this paper, we have proposed a connectionist model that accounts for a solution to the Berko’s wug-test 
in terms of the pattern recognition process via the STM/WM and LTM within AMS.  Although the study 
has focused upon a visual aspect, we believe that the extension to the auditory case is relatively 
straightforward (albeit some additional requisite specific to auditory data processing, e.g. to describe why 
the native speakers tend to pronounce WUGS /-Iz/, neither /-s/ nor /-z/), which has been crucial within 
general linguistics context and is therefore currently under investigation.  (In a similar context, the 
inflection of verbs can be also explained.)  It should however be emphasised that, within our approach, 
pattern recognition at both the letter- and word levels can be performed (Sects. 4.3 - 4.5) within a single 
framework of the Hebbian-motivated learning, in parallel to generalisation of the inflections (Sects. 4.6 
and 4.7), which is not generally considered in conventional connectionist accounts.  Moreover, the 
proposed single framework also agrees with the “memory association then comes the rule” principle 
suggested by Pinker (Pinker 2000).  This is implicitly depicted in Fig. 1 – the memory association is 
performed faster than the rule induction (i.e. the word pattern arrived at the STM/WM is processed faster 
by direct access to the nodes in LTM, rather than via the subsequent relay by the super-ordinate nodes 
‘something is plural’ and ‘{noun}+S’).  Future work also includes performing an actual simulation study 
using computers to confirm our proposal. 
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