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PAPER

Speech Enhancement by Spectral Subtraction Based on Subspace
Decomposition

Takahiro MURAKAMI†a), Student Member, Tetsuya HOYA††b), Nonmember, and Yoshihisa ISHIDA†c), Member

SUMMARY This paper presents a novel algorithm for spectral subtrac-
tion (SS). The method is derived from a relation between the spectrum
obtained by the discrete Fourier transform (DFT) and that by a subspace
decomposition method. By using the relation, it is shown that a noise re-
duction algorithm based on subspace decomposition is led to an SS method
in which noise components in an observed signal are eliminated by sub-
tracting variance of noise process in the frequency domain. Moreover, it is
shown that the method can significantly reduce computational complexity
in comparison with the method based on the standard subspace decomposi-
tion. In a similar manner to the conventional SS methods, our method also
exploits the variance of noise process estimated from a preceding segment
where speech is absent, whereas the noise is present. In order to more reli-
ably detect such non-speech segments, a novel robust voice activity detec-
tor (VAD) is then proposed. The VAD utilizes the spread of eigenvalues of
an autocorrelation matrix corresponding to the observed signal. Simulation
results show that the proposed method yields an improved enhancement
quality in comparison with the conventional SS based schemes.
key words: speech enhancement, spectral subtraction, subspace decompo-
sition, MUSIC algorithm

1. Introduction

In general speech applications such as automatic speech
recognizers, hands-free mobile telephony, or hearing aids,
noise reduction is necessary in order to provide better util-
ities. Spectral subtraction (SS) based methods are well-
known for such purpose in speech signal processing [1]–
[4]. The SS carries out the noise reduction by subtracting
an estimate of the noise spectrum from the noisy signal. In
the conventional SS methods, the estimate of the noise spec-
trum is obtained from the preceding segments where speech
is absent, under the assumption that the statistics of the noise
process do not vary rapidly in time. Therefore, the SS gener-
ally requires a voice activity detector (VAD) in order to de-
tect the non-speech segments and it is well-known that the
performance of the SS is dependent upon the VAD. Espe-
cially in the noisy environment, a robust VAD is inevitable
for the SS.

Martin proposed the nonlinear spectral subtraction
(NSS) [2], [3] which does not require any VAD. In the NSS,
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the noise spectrum in the observed speech is estimated by
using the minimum statistics obtained from several subse-
quent frames. Despite that NSS does not require the VAD,
the performance of NSS is quite dependent upon the choice
of many parameters, for instance, spectral floor constant,
over subtraction factor, and smoothing constant. In prac-
tice, to find the reasonable choice of the parameters is very
hard.

Recently, a number of methods for speech enhance-
ment based on subspace decomposition have been devel-
oped [5]–[14]. In the subspace decomposition methods,
the observed signals are expanded with orthonormal bases
and such bases are partitioned into two disjoint subsets, i.e.,
the bases spanning the signal subspace and those spanning
the noise. Then, noise reduction is achieved by exploiting
the subspace estimates, e.g., by orthonormally projecting
the observed signal onto the estimated signal part. In gen-
eral, the subspace decomposition is carried out by employ-
ing the singular value decomposition (SVD) or the eigen-
decomposition (ED). However, since the algebraic complex-
ity of both the SVD and ED is proportional to the length of
analysis frame, the subspace decomposition is computation-
ally heavy when a long analysis frame is used. Therefore,
in order to alleviate the complexity due to the subspace de-
composition, a large number of adaptive tracking algorithms
have been proposed so far [11], [13], [15]–[20].

The proposed method in this paper is essentially based
on the subspace decomposition. In the method, we exploit
the multiple signal classification (MUSIC) algorithm [4],
[21]. The MUSIC algorithm is a subspace decomposition
method to estimate the frequencies of sinusoids of the sig-
nal contaminated with additive white noise. Generally, in
the MUSIC algorithm, the noise subspace estimated by the
ED of autocorrelation matrix is used. The frequencies esti-
mated by MUSIC algorithm are then utilized for noise re-
duction, which is based on the maximum likelihood method
[23]. In contrast, within this paper, by approximating the
orthonormal bases spanning both the signal and noise sub-
space to the Fourier bases, a relation between the discrete
Fourier transform (DFT) and MUSIC spectra is firstly de-
rived. Then, in terms of the orthonormal bases so estimated,
it is shown that the noise reduction method based on the
MUSIC algorithm combined with the maximum likelihood
estimate can lead to an SS based method in which noise re-
duction is performed by subtracting the estimated variance
of noise process from the observed signal in the frequency
domain. Since the method does not involve any heavy alge-
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braic computation such as the ED, the computational com-
plexity in the proposed method is greatly alleviated in com-
parison with the standard MUSIC algorithm combined with
the maximum likelihood estimate. Second, for the appli-
cation to speech signals, a novel VAD for reliably estimat-
ing the variance of noise process is proposed. The VAD is
developed under the assumption that the eigenvalues of the
autocorrelation matrix associated with the noise are approx-
imated to the variance of the noise, whereas those associ-
ated with the noisy speech are not approximated to a unique
value but spread within a certain range. Later, it will be con-
firmed that this assumption can analytically be validated.

2. Review of the MUSIC Algorithm for Noise Reduc-
tion

Let an N-sample observed signal vector y = [y(0),
y(1), · · · , y(N − 1)]T (T : a vector or matrix transpose) be

y = x + n (1)

where x and n are respectively the target and noise signal
vectors and x is composed of P (< N) sinusoids as follows:

x =
P−1∑
k=0

X( fk)s( fk) (2)

s( fk) = [1, e j2π fk , · · · , e j2π fk(N−1)]T (3)

where s( fk) and X( fk) (k = 0, 1, · · · , P − 1) are respec-
tively the sinusoidal signal vectors and the complex am-
plitudes at the unknown frequencies fk. This expression
is referred to as complex sinusoid model. Note that fk in
this model is any frequency, while in the discrete Fourier
transform (DFT), the frequency is given by the fixed value
fk = l/N (l ∈ {0, 1, · · · ,N − 1}). Then, the noise is often
modeled as Gaussian random process due to the central limit
theorem [22]. In this paper, by taking this general principle
into account, n is assumed to be zero-mean Gaussian white
noise with variance σ2

n and uncorrelated with x.
The autocorrelation matrix of y is defined as

Ryy = E[yyH] (4)

where E[·] and H denote the expectation operation and the
Hermitian transpose of a vector (or matrix), respectively.
Since x and n are uncorrelated with each other, (4) can be
rewritten by

Ryy = E[xxH] + E[nnH]

= Rxx + Rnn

= Rxx + σ
2
nI (5)

where Rxx and Rnn = σ
2
nI are respectively the autocorre-

lation matrices of x and n. Then, the eigen-decomposition
(ED) of Ryy is expressed in the form

Ryy = V DV−1 (6)

where the diagonal elements in D = diag(λ0, λ1, · · · , λN−1)

and the columns of V = [u0, u1, · · · , uN−1] are the eigenvalues
and corresponding eigenvectors of Ryy, respectively. From
(5), λk are given by

λk = µk + σ
2
n, (k = 0, 1, · · · ,N − 1) (7)

where µk (k = 0, 1, · · · ,N − 1) are the eigenvalues of Rxx.
Since the target signal x consists of P sinusoids, µk are ob-
tained as P positive eigenvalues and N −P zeros. Therefore,
λk satisfy the relation{

λ0 ≥ λ1 ≥ · · · ≥ λP−1 > σ
2
n

λP = λP+1 = · · · = λN−1 = σ
2
n
. (8)

The relation (8) indicates that {u0, u1, · · · , uN−1} can be
partitioned into two disjoint subsets. Namely, the first
set {u0, u1, · · · , uP−1} associated with the P largest eigen-
values spans the signal subspace, whereas the second
{uP, uP+1, · · · , uN−1} associated with the N−P smallest eigen-
values (i.e., corresponding to σ2

n) spans the noise subspace.
Since the signal and noise subspace are mutually orthogo-
nal, the sinusoidal signal vectors given by (3) are accord-
ingly orthogonal to the noise subspace:

sH( fk)ul = 0,

(k=0, 1, · · · , P−1; l=P, P+1, · · · ,N−1) (9)

Then, the MUSIC spectrum of y is defined as

YMUS IC( f ) =
1

N−1∑
l=P

|sH( f )ul|2
(10)

where f is an arbitrary frequency. From (9), YMUS IC( f ) is
sharply peaked at f = fk (k = 0, 1, · · · , P−1). Therefore, the
estimated frequencies f̂k (k = 0, 1, · · · , P− 1) corresponding
to x can be obtained by simply taking the P peaks on the
MUSIC spectrum. Finally, the estimated frequencies f̂k are
utilized for eliminating the noise in y. Noise reduction in y
is implemented based on the maximum likelihood estimate
[23]:

x̂ = S(SHS)−1SHy (11)

S = [s( f̂0), s( f̂1), · · · , s( f̂P−1)] (12)

where x̂ is an estimate of the target signal x.
In general, the MUSIC algorithm combined with the

maximum likelihood estimate is commonly used for noise
reduction. However, both the MUSIC algorithm and the
maximum likelihood estimate involve rather heavy compu-
tation, for instance, the ED and matrix inversion. Therefore,
in practice, it is necessary to alleviate such computational
load.

3. Proposed Method

Figure 1 summarizes the procedure for speech enhancement
proposed in this paper. In the figure, y is an N-sample ob-
served signal vector, Y is the DFT spectrum of y, X̂ is the
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N-sample observed speech signal y

�
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�
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n

�

�

Fig. 1 Summary of the procedure for speech enhancement.

spectrum obtained by the newly proposed spectral subtrac-
tion (SS), x̂ is the enhanced speech, and σ2

n is the variance
of noise process. As in Fig. 1, the method carries out noise
reduction without involving algebraic complex calculation
such as the ED and matrix inversion. Therefore, it is consid-
ered that the method is well suited for real-time implemen-
tations.

As shown, the method is similar to the combination of
the classical threshold technique and the conventional spec-
tral subtraction (SS). In both the threshold technique and
SS, however, the performance is generally dependent upon
the choice of parameters, especially the threshold value in
the threshold technique and the subtraction factor in the
SS, and thus to find the optimal choice of such parame-
ters is normally very hard. In contrast, the proposed method
gives a reasonable choice of parameters, since the method is
based on the subspace decomposition method. As shown in
Fig. 1, the method extracts the P largest frequency compo-
nents from the DFT spectrum of y and then subtracts Nσ2

n
from these extracted frequency components without using
the subtraction factor. Moreover, both the parameters, P
and Nσ2

n, are explicitly given by the MUSIC algorithm com-
bined with the maximum likelihood estimation as described
in the following sections.

In this section, it is firstly shown that the ED of the au-
tocorrelation matrix is approximated to Fourier bases expan-
sion. This approximation yields a relation between the DFT
and MUSIC spectra. Then, by using this relation, it is shown
that the noise reduction algorithm based on the combination

of the MUSIC algorithm and the maximum likelihood esti-
mate results in a simple algorithm which does not involve
heavy computation. Moreover, in order to perform noise re-
duction further, a novel SS method is derived by exploiting
the property in (11).

3.1 Approximating the Eigen-Decomposition of the Auto-
correlation Matrix

In general, the autocorrelation matrix Ryy is estimated by an
ensemble average as

Ryy =
1
M

M−1∑
m=0

y(m)yH(m) (13)

where y(m) = [y(m), y(m + 1), · · · , y(m + N − 1)]T (m =
0, 1, · · · ,M − 1) is the observed signal vector in the m-th
analysis frame and M is the number of analysis frames. In
this paper, in order to alleviate the computational complex-
ity in the ED, we consider the general assumption that y(m)
has an implicit periodicity with period N as in the DFT the-
orem, i.e.,

y(m + N) = y(m). (14)

Under this assumption, the ED of Ryy can be approximated
to Fourier bases expansion. In (13), by using the Fourier
bases, y(m) is expressed in the form

y(m) =Wa(m) (15)

W = [w0,w1, · · · ,wN−1] (16)

wk = [1, e j2πk/N , · · · , e j2πk(N−1)/N]T (17)

a(m)=
1
N

[Y(0; m),Y(1; m),· · · ,Y(N−1; m)]T (18)

where wk and Y(k; m) (k = 0, 1, · · · ,N − 1) are the Fourier
basis vector and the DFT spectrum of y(m) at the k-th fre-
quency bin, respectively. Then, under the assumption (14),
the eigenvalues and eigenvectors of Ryy are respectively ap-
proximated to

λl =
|Y(k; 0)|2

N
(19)

ul = wk, (k, l = 0, 1, · · · ,N − 1) (20)

(see Appendix). Note that in general k � l, since k and l
denote the indices in order of the frequency and amplitude,
respectively.

3.2 Relation between the DFT and MUSIC Spectra

It has been shown that, under the assumption (14), the eigen-
vectors of Ryy are approximated to the Fourier bases as in
(20). This approximation implies that the inner product of
the sinusoidal signal vector and the eigenvector is equiva-
lent to that of the sinusoidal signal vectors, since the Fourier
basis is also given as the sinusoidal signal vector at the fre-
quency k/N (k = 0, 1, · · · ,N−1). Therefore, it is considered
that the MUSIC spectrum defined by (10) yields a simple
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form as follows:
The inner product of the sinusoidal signal vector and

the eigenvector is given by

sH( f )ul = sH( f )wk

=

N−1∑
n=0

e− j2π f ne j2πkn/N

=



N,

(
f =

k
N

)

0,

(
f ∈

{
0,

1
N
, · · · , N − 1

N

}
∩ f �

k
N

)

c f ,

(
f �

{
0,

1
N
, · · · , N − 1

N

})
,

(k, l = 0, 1, · · · ,N − 1) (21)

where c f (� 0) is any complex value. The relation (21) indi-
cates that the denominator in (10) is obtained as follows:

• If f is equal to one of the frequencies associated with
the P largest components in the DFT spectrum of y(0),

N−1∑
l=P

|sH( f )ul|2 = 0. (22)

• Else if f is equal to one of the frequencies associated
with the N − P smallest components in the DFT spec-
trum of y(0),

N−1∑
l=P

|sH( f )ul|2 = N2. (23)

• Otherwise, if f is not equal to
k
N

(k = 0, 1, · · · ,N − 1),

N−1∑
l=P

|sH( f )ul|2 > 0. (24)

It is then evident that, from the relations (22)–(24), the MU-
SIC spectrum has poles only in the case of (22). From this, it
is also said that the MUSIC spectrum is closely related with
the DFT spectrum, i.e., (10) has P poles at the frequencies
which are identical to those of the P largest components in
the DFT spectrum of y(0).

3.3 Spectral Subtraction Based on the Subspace Decom-
position

In the noise reduction algorithm based on the maximum
likelihood estimate, as in (11), the matrix S is comprised of
P sinusoidal signal vectors s( f̂k) (k = 0, 1, · · · , P − 1) whose
frequencies f̂k are estimated from the MUSIC spectrum. On
the other hand, as shown in Sect. 3.2, the estimated frequen-
cies f̂k obtained from the MUSIC spectrum are equivalent
to the frequencies of the P largest components in the DFT
spectrum, i.e., f̂k satisfy the relation

f̂k ∈
{

0,
1
N
, · · · , N − 1

N

}
, (k = 0, 1, · · · , P − 1). (25)

This relation implies that the computation of (11) can be
simplified due to the orthogonal property of s( f̂k).

Substituting (15) in (11), x̂ is rewritten as

x̂ = Sb (26)

b = (SHS)−1SHWa(m). (27)

In (26) and (27), since the frequencies f̂k are expressed by
(25), the columns of S, s( f̂k), are mutually orthogonal:

sH( f̂k)s( f̂l) =

{
N, ( f̂k = f̂l)
0, ( f̂k � f̂l)

,

(k, l = 0, 1, · · · , P − 1). (28)

Then, from (28), the matrix inversion (SHS)−1 is expressed
in the form

(SHS)−1 =
1
N

I. (29)

In addition, since f̂k is given by the relation (25), s( f̂k) and
the columns of W, wl, mutually exhibit the orthogonal prop-
erty as

sH( f̂k)wl =


N,

(
f̂k =

l
N

)

0,

(
f̂k �

l
N

) ,

(k = 0, 1, · · · , P − 1; l = 0, 1, · · · ,N − 1). (30)

Therefore, it is now clear that the vector b given by (27)
is composed of the P largest elements of a(m) by the rela-
tions (29) and (30). This indicates that the noise reduction
algorithm based on a combination of the MUSIC algorithm
and the maximum likelihood estimate is similar to the clas-
sical threshold technique in which the noise reduction is per-
formed by extracting the relatively large components from
the DFT spectrum. In other words, it is said that the clas-
sical threshold technique can be derived within the context
of the subspace decomposition. Moreover, from the rela-
tions (26), (27), (29) and (30), the number of the frequency
components which are extracted for reconstructing the target
signal is equal to P (i.e., the order of the signal subspace),
while such number is determined empirically in the conven-
tional method. The method for estimating the order of the
signal subspace P is described later.

In this way, extraction of the P largest components
from the DFT spectrum leads to noise reduction. However,
the frequency components so extracted contain the noise,
since the noise components are spread over all the frequen-
cies. Then, in order to eliminate the noise in the frequency
components, we here propose a novel SS method.

By the analogy to (19), the eigenvalues of Ryy is given
by using the elements of b:

λk =
|bk |2
N
, (k = 0, 1, · · · , P − 1) (31)

where bk (k = 0, 1, · · · , P − 1) is the k-th row elements of b.
From (31), bk can be expressed in terms of λk as



694
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.3 MARCH 2005

bk = |bk | × e j∠bk

=
√

Nλk × e j∠bk , (k = 0, 1, · · · , P − 1). (32)

In (31) and (32), λk contains the noise components as in
(7). Then, the noise components in λk are eliminated by
subtracting σ2

n:

λ′k = λk − σ2
n

=
|bk |2
N
− σ2

n, (k = 0, 1, · · · , P − 1). (33)

Thus, the relation√
Nλ′k =

√
|bk |2 − Nσ2

n, (k = 0, 1, · · · , P − 1) (34)

yields the elimination of the noise components in |bk |. Hence
the noise reduction in bk is performed by

b′k =
√
|bk |2 − Nσ2

n × e j∠bk , (k = 0, 1, · · · , P − 1). (35)

Finally, the estimated signal x̂ is obtained as

x̂ = Sb′ (36)

b′ = [b′0, b
′
1, · · · , b′P−1]T . (37)

In (35), the proposed method can also be seen as one of
the SS methods. Generally, in the conventional SS methods,
the statistics of noise process (e.g., the amplitude spectrum
of noise) are multiplied by the subtraction factor and then
subtracted from the spectrum of the observed signal. How-
ever, the optimal choice of the subtraction factor is normally
quite hard. Instead of employing the subtraction factor, the
proposed method carries out noise reduction by only sub-
tracting Nσ2

n from the power spectrum of y. As described
above, Nσ2

n is derived by approximating the MUSIC algo-
rithm. Therefore, the method is efficient not only to allevi-
ate the computational complexity in the MUSIC algorithm
combined with the maximum likelihood estimate but also to
eliminate the noise components without using the subtrac-
tion factor.

3.4 Attenuation of the Processing Distortion

It has been described that the method derived above is clas-
sified into the power spectral subtraction due to (35). How-
ever, it is well-known that the SS based methods suffer from
the self-producing noise, that is, “musical noise.” This un-
desirable artifact greatly deteriorates the intelligibility in the
enhanced speech. Therefore, in the SS based methods, the
attenuation of musical noise is a key to improve the enhance-
ment quality.

It is known that the musical noise is caused by the ran-
dom variations in the noise spectrum. This indicates that
suppression of such random variations leads to the attenua-
tion of musical noise. Then, in the proposed method, the
observed signal is Hanning-windowed to obtain the DFT
spectra a(m). This is based on the fact that Hanning-
windowing in the time domain is equivalent to the convo-
lution in the frequency domain. Since the convolution by

Hanning-windowing in the frequency domain operates to
weight a few consecutive frequency bins and then add to
the original bins, the noise spectrum is slightly smoothed.
Therefore, the variations in the noise spectrum are attenu-
ated by Hanning-windowing. In various SS based methods,
Hanning-windowing combined with the overlap-add oper-
ation is generally employed to avoid the discontinuity be-
tween the adjacent frames. However, in this paper, it is jus-
tified that Hanning-windowing combined with the overlap-
add operation is effective in order not only to avoid discon-
tinuity but also to attenuate the musical noise.

Moreover, the characteristic differences between musi-
cal noise and speech can also be utilized for reducing such
undesirable noise. One of the most important characteristics
of musical noise is that the majority of the frequency compo-
nents consisting musical noise have the duration shorter than
about 20 [msec], whereas the duration of the speech com-
ponents is considerably long [4]. Therefore, the frequency
components which last no more than 20 [msec] are identi-
fied as the musical noise components and eliminated in the
enhanced speech.

4. Determining the Order of the Signal Subspace

In the conventional subspace-oriented methods, one of the
key issues is to determine the order of the signal subspace
P. For determining P, one of the well-known methods is
to minimize both the Akaike’s information criterion (AIC)
[24] and the minimum description length (MDL) [25], [26].
However, in general, the method requires a relatively large
number of frames of y in order to obtain the better estimate
of P.

Another approach is to determine P from the spread of
eigenvalues of Ryy. As in (8), P can be determined from
the number of the eigenvalues which are greater than σ2

n. In
practice, however, the resulting eigenvalues are not approx-
imated to a unique value for a finite analysis frame length.
Thus, it seems rather difficult to determine P directly from
the spread of eigenvalues.

On the other hand, the spread of eigenvalues of Rnn

differs from those of Rxx. To illustrate this, Fig. 2 shows
an example of the eigenvalues of Rnn and Rxx. In the figure,
the solid and broken lines are respectively the eigenvalues of
Rnn obtained by using noise (which is assumed to be Gaus-
sian) and those of Rxx by using clean speech (vowel /a/ ut-
tered by a Japanese female). The dotted line is the variance
(both noise and speech are normalized to variance unity). As
shown in the figure, the eigenvalues of Rnn relatively con-
centrate around the variance, while the eigenvalues of Rxx

are spread from the value 0 to greater than 10 (in this exam-
ple, the maximum value was about 43). As in Fig. 2, it is
seen that the eigenvalues of Rnn are close to σ2

n. Then, from
this observation and the hypothesis that the eigenvalues of
Ryy are obtained from (7), the estimation of P is relatively
straightforward, by regarding σ2

n as the threshold value for
separating the eigenvalues into those associated with the sig-
nal and noise subspace. Hence, in this paper, P is deter-
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Fig. 2 Eigenvalues of autocorrelation matrices.

mined from the number of the eigenvalues of Ryy which are
greater than σ2

n.
In the proposed method, n is assumed to be Gaussian,

which is considered to be sufficient to describe general situa-
tions. As mentioned in Sect. 2, the central limit theorem im-
plies that the distribution of noise can eventually be approxi-
mated to Gaussian when there are multiple noise sources, for
example, an air-conditioner, a vehicle, and a factory. There-
fore, it is considered that the proposed method is effective to
a certain extent in the real environment. In Sect. 6, we will
investigate the performance of the proposed method in both
the cases of computer generated Gaussian and real recorded
noise.

5. Estimating the Variance of Noise Process

In the proposed method (as described in both Sects.3 and
4), the variance of noise process, σ2

n, is exploited for both
noise reduction and subspace decomposition. However, in
practice, the true value of σ2

n cannot be obtained, since, as
mentioned earlier, the length of analysis frame is finite.

Consider that y is composed of only noise, i.e., y = n.
Then, for a finite frame length, the variance of y cannot be
obtained. However, if the analysis frame length of y is suf-
ficiently long, it is satisfactory to use the instantaneous esti-
mate of the variance in each frame of y within the proposed
noise reduction method. Therefore, an instantaneous esti-
mate of the variance σ2

n is used within the proposed method.
In realistic situations, the noise process is usually non-

stationary, while the speech utterance normally consists of
separated sentences with multiple of silent periods. There-
fore, under the assumption that the variance of the noise pro-
cess does not vary rapidly in time, σ2

n in the speech segments
can be regarded as nearly the same as the estimated value
in the last segment where the speech is absent but noise is
present.

In order to estimate the variance of noise process, the
proposed method requires a voice activity detector (VAD)
which detects the non-speech segments from speech sig-
nals. For the purpose of VAD, the following parameters are
commonly utilized: zero-crossing rate, signal energy, or one

sample delay correlation coefficient [11], [13], [27], [28]. In
general, speech segments are detected by simply comparing
the parameters so obtained with the threshold values, which
are chosen heuristically or obtained using a certain number
of previous frames. However, the threshold value must be
varied according to, e.g., the instantaneous SNR or ampli-
tude of y. Thus, we propose a simple VAD which does not
require the adjustment of such threshold value.

As in (8), the eigenvalues of Ryy in the speech segments
are given by

λk>λl, (k=0, 1, · · · , P−1; l=P, P+1, · · · ,N−1), (38)

while all the eigenvalues are considered to be identical,
when y is composed of only noise, namely

λk = σ
2
n, (k = 0, 1, · · · ,N − 1). (39)

In practice, as in the example in Fig. 2, it is considered that
the eigenvalues in the non-speech segments are not approx-
imated to a single value. As mentioned in Sect. 4, however,
the eigenvalues of Rnn are considered to be nearly constant
in comparison with those of Rxx. Therefore, the difference
between the speech activity and silence appears in terms of
the spread of eigenvalues. Then, we define the VAD:

DVAD = 10 log10



(N − P)
P−1∑
k=0

|λk − σ̂2
n|2

P
N−1∑
l=P

|λl − σ̂2
n|2


(40)

where DVAD indicates that the spread of eigenvalues, σ̂2
n is

the estimated variance of noise process obtained from the
previous non-speech segment and P is the number of eigen-
values which are greater than σ̂2

n. Over several subsequent
non-speech segments, DVAD is expected to be nearly a con-
stant value, whereas, in the case of speech activity, DVAD is
large. Hence, σ̂2

n is updated as

σ̂2
n(m+1)=


σ2
y(m),

(
DVAD(m)≤Dthreshold

)
σ̂2

n(m),
(
DVAD(m)>Dthreshold

) ,
(m = 0, 1, · · ·) (41)

where DVAD(m), σ̂2
n(m), σ2

y (m = 0, 1, · · ·), and Dthreshold are
the spread of eigenvalues, the estimated variance of noise
process, the variance of the observed signal in the m-th
frame, and the threshold value for the VAD, respectively.
Since the proposed VAD is based on the spread of eigenval-
ues of the autocorrelation matrix, it is not necessary to vary
Dthreshold according to the instantaneous SNR or amplitude
of y. In the method, under the assumption that the observed
signal does not begin immediately with speech, Dthreshold is
determined by averaging DVAD(m) in the first few frames of
the observed signal. In addition, in this paper, the variance
of the observed signal in the first frame is used for giving
the initial value σ̂2

n(0).
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6. Simulation Study

6.1 Parameter Settings

In the simulation study, the performance obtained by the
proposed method was compared with the conventional SS
method (SS), NSS, and the MUSIC algorithm combined
with the maximum likelihood estimate (MUSIC+MLE). In
SS, the VAD proposed in Sect. 5 was used for examining the
performance of the proposed VAD. In the case of NSS, in or-
der to see how the performance varies, two different parame-
ter settings shown in Table 1 were attempted: the parameters
were optimized to eliminate the residual noise (NSS1) and
attenuate the distortion of speech (NSS2). These parameters
were set by the separate simulation study. In addition, the
over subtraction factor in NSS was adjusted as the function
of SNR at each frequency (see, e.g., [4]). In MUSIC+MLE,
the order of the signal subspace P was determined by using
the method in which the AIC was minimized [24], [26].

For the speech signals x, the utterances by three male
and two female speakers were used. Each utterance was the
speech “Sakura ga saita” in Japanese, sampled originally at
44.1 [kHz], and then down-sampled to 11.025 [kHz].

In order to validate the proposed method, we investi-
gated the following two cases for the noise signal n: the
noise components are 1) the random variables generated
from Gaussian distribution and 2) real fan noise signals.
Both the noise signals were assumed to be zero-mean and
variance unity. Then, the amplitude of both the noise sig-
nals was adjusted according to the input SNR from −5 dB to
15 dB.

The observed signal was divided into a multiple num-
ber of frames by applying an overlap-add window. The
length of each frame was N = 512 and the adjacent frames
were overlapped at every N/2 = 256 samples for giving a
good trade-off in terms of the performance and the compu-
tational complexity. For determining Dthreshold , the first four
frames in the observed signal were used.

6.2 Performance Measurements

For the evaluation of the enhancement quality, the com-
monly used objective measurements in terms of both the
segmental SNR [29] and the averaged cepstral distance [30]

Table 1 Parameters used for NSS.

Setting Name NSS1 NSS2
DFT Length 512 1024

Decimation Ratio 128 256
Window Length 4 5

for Minimum Search
Spectral Floor Constant 0.02 0.05

Smoothing Constant 0.75 0.85
for Signal Power Estimate

Smoothing Constant 0.89 0.63
for Noise Power Estimate

Overestimation factor 1.5 2

were considered:
The segmental SNR is defined as

S NRseg =
1
M

M−1∑
m=0

10 log10

NS NR∑
k=0

x2
m(k)

NS NR∑
k=0

(xm(k) − x̂m(k))2

(42)

where xm(k) and x̂m(k) are respectively the original and the
estimated speech at the m-th frame, NS NR is the length of
analysis frames (set to 256), and M is the number of frames
where speech is present. The determination of speech pres-
ence was achieved by manual inspection of the clean speech.

The averaged cepstral distance is given by

dcep =
1
M

M−1∑
m=0

2q−1∑
k=0

(
cm(k) − ĉm(k)

)2
(43)

where cm(k) and ĉm(k) are respectively the cepstral coeffi-
cients corresponding to the original speech and the enhanced
speech, and q is the order of the model (chosen to 8).

6.3 Simulation Results

6.3.1 Gaussian Noise Case

Figure 3 shows the simulation results using the speech sam-
ple uttered by a female speaker. As shown in Figs. 3(d)
and 3(e), it is observed that the enhanced speech by NSS1
is greatly attenuated and the waveform is greatly distorted
in comparison with the original speech shown in Fig. 3(a),
while the residual noise is noticeably observed from the en-
hanced speech by NSS2. From these results, it is shown
that NSS cannot suppress the distortion of speech and the
residual noise simultaneously. On the other hand, as in
Fig. 3(f), although MUSIC+MLE attenuates both the dis-
tortion of speech and the noise components in comparison
with NSS, the residual noise is still observed. In contrast,
in Fig. 3(g), the proposed method substantially reduces the
noise components while preserving the overall shape of the
speech.

In Figs. 4, (a) and (b) respectively show the perfor-
mance comparison in terms of the segmental SNR and the
averaged cepstral distance. In the figures, both the segmen-
tal SNR and the averaged cepstral distance were averaged
over the five speech samples. As shown in the figures, both
the performances obtained by the combination of the con-
ventional SS and the proposed VAD (SS) are better than
those by NSS1 and NSS2. From this, it is considered that
the VAD proposed in Sect. 5 gives better performance of es-
timating the statistics of the noise process as compared with
NSS even in the low SNR environments. In addition, as
in Fig. 4, though the same VAD was employed, the perfor-
mance obtained by the proposed method is superior to that
by SS. Moreover, the proposed method improves the seg-
mental SNR and the cepstral distance around 2 dB and 0.2,
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Fig. 3 Simulation results of the speech sample uttered by a female
speaker (Gaussian noise case): (a) Original speech, (b) Noisy speech (Input
SNR=0 dB), (c) Enhanced speech by SS, (d) Enhanced speech by NSS1, (e)
Enhanced speech by NSS2, (f) Enhanced speech by MUSIC+MLE, and (g)
Enhanced speech by the proposed method.

respectively, as compared with MUSIC+MLE. These indi-
cate that both the speech and noise signals are appropriately
modeled by the method proposed in Sect. 3. As a result,
the proposed method gives the best performance of the five
methods. Especially, at input SNRs<0 dB in Fig. 4, the pro-
posed method improves the segmental SNR more than 3 dB
and the averaged cepstral distance obtained by the proposed
method is more than 40% shorter in comparison with the
conventional SS based methods.

Table 2 shows the performance comparison in terms of
the ratio of computation. In the table, the ratio of computa-
tion was normalized to SS=1. As in the table, it is clearly
seen that the proposed method reduced the ratio of compu-
tation to around 0.1% as compared with MUSIC+MLE. In
addition, in comparison with both the NSS1 and NSS2, the
computational load is alleviated by the proposed method.
Therefore, it is shown that the proposed method can be well
suited to the real-time application.

In the informal listening tests, it was confirmed that in
both the cases of SS and MUSIC+MLE, the residual noise
is observed and it is noticeable. By the residual noise, the
intelligibility of speech was considerably degraded, particu-
larly in very low SNR environments as input SNRs<0 dB.

(a) Performance comparison in terms of the segmental SNR.

(b) Performance comparison in terms of the averaged cepstral distance.

Fig. 4 Performance comparison in the case of Gaussian noise.

Table 2 Performance comparison in terms of the ratio of computation.

Ratio of Computation
(Normalized to SS=1)

SS 1
NSS1 2.2
NSS2 2.2

MUSIC+MLE 1101.8
Proposed Method 1.1

On the other hand, the listening tests showed that NSS1
deteriorates the intelligibility of speech, since NSS1 re-
duces not only the noise but also the speech components,
while with the NSS2, the residual noise is still heard. Both
the degradation of intelligibility by NSS1 and the resid-
ual noise by NSS2 were noticeable especially at the in-
put SNRs<5 dB. In contrast, in the listening tests, it was
confirmed that the proposed method eliminates only the
noise components with much less distortion. At the in-
put SNRs<5 dB, in the enhanced speech by the proposed
method, less amount of musical noise was observed as com-
pared with that by the conventional SS based methods.

6.3.2 Real Fan Noise Case

Figure 5 shows the performance comparison in the case of
using the real fan noise. In the figure, as in Fig. 4, the re-
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(a) Performance comparison in terms of the segmental SNR.

(b) Performance comparison in terms of the averaged cepstral distance.

Fig. 5 Performance comparison in the case of real fan noise.

sults shown are averaged over the five speech samples. As
shown in Figs. 5(a) and 5(b), both the performances with SS
are better than those with NSS1 and NSS2. Therefore, it
was confirmed that the proposed VAD is still effective even
in the real environment. In contrast, as in Fig. 5(a), at in-
put SNRs>2 dB, SS gives the best performance of the five
method, and at input SNRs<5 dB, the segmental SNR ob-
tained by the proposed method is slightly degraded in com-
parison with that by both SS and NSS2. On the other hand,
in Fig. 5(b), at the input SNRs<4 dB, the performance in
terms of the averaged cepstral distance obtained by the pro-
posed method is the best of all of five methods. However, at
higher input SNRs, the averaged cepstral distance obtained
by both SS and NSS2 is the best of performance in terms of
the five methods.

In the informal listening tests, it was seen that in SS,
NSS1, NSS2, and MUSIC+MLE, the results are similar to
the case of the Gaussian noise, i.e., SS, NSS2, and MU-
SIC+MLE) the residual noise was observed, and NSS1) the
intelligibility of speech was degraded. In contrast, the lis-
tening tests showed that the enhanced speech obtained by
the proposed method somewhat sounds like a mixture of the
original speech and low-pass filtered noise. It is considered
that the main cause of the residual noise in the enhanced
speech is due to the fact that the power of the fan noise
used in the simulation study rather concentrates in a rela-

(a) Power spectrum of Gaussian noise.

(b) Power spectrum of real fan noise.

Fig. 6 Comparison of the noise spectra.

tively lower frequency range. To illustrate this, Fig. 6 shows
the comparison between the Gaussian noise and the real fan
noise spectra. As shown in the figure, it is observed that the
real fan noise is composed of the large lower frequency com-
ponents and, in contrast, the small higher frequency compo-
nents, whereas the power of the Gaussian noise spreads uni-
formly over all the frequencies. Since the proposed method
subtracts the variance of the noise from the power spectrum
of the noisy speech uniformly by (35), it is considered that
the lower frequency components of the noise are left in the
enhanced speech. It is also considered that deterioration
in the enhancement quality by the proposed method as in
Fig. 5 is caused by the residual noise in the enhanced speech.
Therefore, it is inevitable that the model of noise described
in this paper is expanded into the case of non-Gaussian dis-
tribution in order to obtain a further improvement.

7. Conclusion

A novel method of noise reduction for speech signals us-
ing the SS based on the subspace decomposition has been
proposed. In this paper, by approximating the orthonormal
bases, which span both the signal and noise subspace, to
the Fourier bases, the relation between the DFT and MU-
SIC spectra has been derived. Then, we have shown that
the noise reduction algorithm using the MUSIC algorithm
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combined with the maximum likelihood estimate results in
a novel power spectral subtraction method by exploiting the
relation between the DFT and MUSIC spectra. Moreover,
for estimating the variance of noise process, we have also
proposed the robust VAD based on the spread of eigenval-
ues of the autocorrelation matrix.

In the simulation, it has been observed that the en-
hancement quality obtained by our method is superior to
the quality obtained by the NSS in the case of the Gaus-
sian noise, while in the case of the real fan noise, the pro-
posed method is effective to a certain extent. In addition,
the simulation results have shown that the proposed method
is well suited to the real-time implementation. In the infor-
mal listening tests, it has been confirmed that the proposed
method effectively reduces the noise components with much
less distortion in the enhanced speech as compared with the
NSS. Future work includes a thorough investigation in or-
der to obtain a further enhancement in the case of the non-
Gaussian noise.
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Appendix: Approximation of the ED

The relations (19) and (20) are derived under the assumption
(14) as follows:

By substituting (15) in (13), Ryy is rewritten by

Ryy =
1
M

M−1∑
m=0

(
Wa(m)

)(
Wa(m)

)H
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= W

 1
M

M−1∑
m=0

a(m)aH(m)

WH

= WRaaWH (A· 1)

where

Raa =
1
M

M−1∑
m=0

a(m)aH(m) (A· 2)

is the autocorrelation matrix of a(m). In (A· 1), the columns
of W (i.e., the Fourier basis vectors wk) are mutually orthog-
onal as

wH
k wl =

{
N, (k = l)
0, (k � l)

, (k, l = 0, 1, · · · ,N − 1), (A· 3)

since the elements of wk are equally spaced in angle around
the unit circle in the complex plane. This orthogonal prop-
erty indicates that

WHW = NI. (A· 4)

Therefore, WH is given by

WH = NW−1. (A· 5)

Substituting (A· 5) in (A· 1), we have

Ryy = WRaa(NW−1)

= W(NRaa)W−1. (A· 6)

The relation (A· 6) has a similar structure to (6). However,
in (A· 6), NRaa is not a diagonal matrix in general, since, by
substituting (18) in (A· 2), the elements of Raa are expressed
as

rkl =
1
M

1
N2

M−1∑
m=0

Y(k; m)Y(l; m),

(k, l = 0, 1, · · · ,N − 1) (A· 7)

where rkl is the k-th row and l-th column element of Raa

and Y(l; m) is the complex conjugate of Y(l; m). In contrast,
under the assumption (14), Raa can be diagonalized. From
(14), Y(k; m) is given by

Y(k; m) = Y(k; 0)e j2πkm/N ,

(k = 0, 1, · · · ,N − 1; m = 0, 1, · · · ,M − 1). (A· 8)

Substituting (A· 8) in (A· 7), rkl is rewritten as

rkl =
1
M

1
N2

M−1∑
m=0

Y(k; 0)Y(l; 0)e j2π(k−l)m/N ,

(k, l=0, 1, · · · ,N−1; m=0, 1, · · · ,M−1). (A· 9)

Since e j2π(k−l)m/N (m = 0, 1, · · · ,M − 1) are equally spaced
in angle around the unit circle in the complex plane,∑M−1

m=0 Y(k; 0)Y(l; 0)e j2π(k−l)m/N in (A· 9) can be represented
by

M−1∑
m=0

Y(k; 0)Y(l; 0)e j2π(k−l)m/N

=


M|Y(k; 0)|2, (k = l)
Q−1∑
m=0

Y(k; 0)Y(l; 0)e j2π(k−l)m/N , (k � l)
,

(k, l = 0, 1, · · · ,N − 1) (A· 10)

where Q = M mod N. Hence we have

lim
M→∞ rkl =


|Y(k; 0)|2

N2
, (k = l)

0, (k � l)
,

(k, l = 0, 1, · · · ,N − 1). (A· 11)

From the relation (A· 11), Raa is given in terms of the diag-
onal matrix:

Raa=diag

( |Y(0; 0)|2
N2

,
|Y(1; 0)|2

N2
, · · · , |Y(N − 1; 0)|2

N2

)
.

(A· 12)

Therefore, under the assumption (14), the relation (A· 6)
represents the ED of Ryy. Thus, the eigenvalues and eigen-
vectors of Ryy are respectively approximated to the relations
(19) and (20).
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