MODELING THE NOTIONS OF INTUITION AND
CONSCIOUSNESS BY HIERARCHICALLY ARRANGED
GENERALIZED REGRESSION NEURAL NETWORKS

Tetsuya Hoya

Laboratory for Advanced Brain Signal Processing,
BSI-RIKEN, 2-1, Hirosawa, Wakoh-City, Saitama 351-0198, Japan
hoya@bsp.brain.riken.go. jp

Abstract— In this paper, two psychological func-
tions, intuition and consciousness, are interpreted by
means of the evolution of a newly proposed hierarchi-
cally arranged generalized regression neural network
(HA-GRNN). In the simulation study, the effective-
ness of the HA-GRNN in comparison with k-means
clustering method is confirmed within the context of
pattern classification tasks.

I. Introduction

Interpretation of the notions related to emotion-
al/psychological functions have historically been con-
troversy among many disciplines from biology to phi-
losophy. Now, with the recent advancements in bio-
logical studies as well as computer technologies, one
of which we wish to achieve in near future is develop,
what is called, ‘brain-style’ computers (e.g., [1]).

It is said that one of the key approaches toward-
s the development of brain-style computing is how to
elucidate the mechanism of “intuition” in terms of ar-
tificial neural networks. On the other, modeling the
notion of “consciousness” has recently been a topic
of great interest in robotics [2][3]. In this paper, it
is addressed that such psychological functions, “intu-
ition” and “consciousness”, can be interpreted in terms
of the evolution of an hierarchically arranged general-
ized regression neural network (HA-GRNN) model in
which each sub-network has memory-based architec-
ture. The evolution is then justified within the frame-
work of pattern classification tasks. The generalized
regression neural networks (GRNNs) [4] fall in the cat-
egory of radial basis function neural networks (RBF-
NNs) [5], while, unlike ordinary RBF-NNs, having a
special property that the weight vectors between the
RBFs and output neurons are given identical to the
target vectors. By virtue of this attractive property,
a dynamic neural system can be modeled without any
complex mathematical operations.

II. Configuration of a GRNN

A multilayered GRNNs (ML-GRNN) [5] with N; in-
put neurons, Nj radial basis functions (RBFs), and
N, output neurons is illustrated on the top of Fig.
1. In Fig. 1, each input neuron z; (: = 1,2,---,N;)
corresponds to the element in the input vector x =

[z1,T2, -, zn,)T (T: vector transpose), h; (j =
1,2,---,Np) is the j-th RBF (note that Nj is vari-
able), ||---||3 denotes the squared Ly norm, and the
output neuron o, (k =1,2,---,N,) is given as
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where ¢; is called the centroid vector, ¢; is the radius,

and w; denotes the weight vector between the j-th RBF
and the output neurons.

As in Fig. 1 on the top, the structure of an ML-
GRNN is similar to the well-known multilayered per-
ceptron perceptron neural network (MLP-NN) except
RBFs are used in the hidden layer and linear functions
in the output layer. In Fig. 1, if the target vector ¢(x)
corresponding to the input pattern vector x is given
as

(81,85, ...

1
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and if the centroid h; is assigned for z, w; = t(x),
then the entire network becomes topologically equiva-
lent to the one with a decision unit and N, number of
sub-nets as in the bottom of the figure. In summary,
the network configuration by means of an ML-GRNN
is simply done in the following;:

0N, ),

if  belongs to the class
corresponding to o,
otherwise

Network Growing: Set ¢; = « and fix o;, then add the
term w;h; in (2). The target vector ¢(x) is used as
a class ‘label’ indicating the sub-network number to
which the RBF belongs.

Network Shrinking: Delete the term, w;xh;, from (2).

ITI. An Hierarchically Arranged Generalized
Regression Neural Networks

The structure of an hierarchically arranged GRNN
(HA-GRNN) is illustrated in Fig. 2. In the figure,



Figure 1: Illustration of Topological Equivalence Between
the ML-GRNN With M Hidden and N Output Units and
the Assembly of the N Distinct Sub-Networks.

a multiple of GRNNs representing long-term memo-
ry (LTM) networks (LTM Net (1 to L) in Fig. 2), a
modified RBF network representing short-term mem-
ory (STM), and a decision unit are used. Moreover,
the LTM nets can be subdivided into two parts; one
for ‘intuitive outputs’ (denoted by Region 1 in a circle)
and the others (denoted by Region 2). In the second
part, each LTM Net (2 to L) has the same structure
as in the bottom of Fig. 1, whereas both the STM and
LTM Net 1 are given as modified RBF-NNs.

A. Structure of the STM Network

The output of the STM network Ogrpy is given in a
vector form rather than a scalar value calculated as
the sum. of the RBF outputs. The STM network,
unlike the LTM nets described later, does not have
any sub-nets, namely it is based upon a single lay-
ered structure, with a maximum number of centroids
Mgtrr. The STM has, therefore, a structure similar to
a queuing system. The learning of the STM network
is summarized as follows:

Step 1: If the number of the centroids is less than
Mstu, add an RBF with h; (given in (2)) and
¢; = x in the STM. Then, set Osrnm = .

Step 2: Otherwise,
1) If the activation of the least activated centroid
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Figure 2: Schematic Representation of an Hierarchically
Arranged GRNN

(hj, say) hj < thsTwm, replace it with a new one
with ¢; = « and set OsTm = .
2) Otherwise,

Ostm =Aep + (1= Nz (3)

where ¢, is the centroid vector of the most acti-
vated centroid (k-th, say) hx and A is a smoothing
factor (0 <A <1).

B. Structure of the LTM Networks

Similar to the STM, each LTM net in Fig. 2 has a max-
imum number of the centroids Mrrn, ¢ = 1,2,---, L.
The LTM nets, except LTM Net 1, are, in turn, com-
posed of the GRNNs rather than RBF-NNs. There-
fore, each LTM net is viewed as a collection of the
sub-nets plus a decision unit as in the bottom of Fig.
1 (except LTM Net 1). In contrast, LTM Net 1 consists
of the centroids without a summing operation unit in
the output. The output of LTM Net 1, Or7ar,1 is iden-
tical to the activation of the most activated centroid
(I-th, say) hy; itself chosen by the ‘winner-takes-all’ s-
trategy.

C. Evolution of the HA-GRNN

In the HA-GRNN, the role of the STM is to ‘buffer’ the
incoming input pattern vectors, before storing them to
the LTM nets. It is then hypothesized that long-term
memory, in itself, has a layered structure represent-
ing an hierarchical classification system which is based
on the ‘importantness’ or ‘attractiveness’ of informa-
tion. In this paper, such a classification system is mod-
eled based on the activation of centroids. In summary,
the construction of the HA-GRNN is divided into four
phases:

Phase 1: STM (and LTM Net 2) formation (¢t = 0).

Phase 2: Formation of the LTM networks, LTM Net
(2 to L).



Phase 3: Reconfiguration of the LTM Net (2 to L)
(self-evolution) (¢t = t1).
Phase 4: Formation of LTM Net 1 (¢t = ¢2).

In Phase 1, the STM is formulated in the manner
as described in Section ITI.A, while LTM Net 2 is also
formed by directly assigning the output vectors of the
STM to the centroids in LTM Net 2. In the above,
t denotes the t-th pattern presentation. The addition
of the centroids in Sub-Net 7 (i = 1,2, ..., Ny, where
N, is the number of classes) of LTM Net 2 is repeated
until the total number of centroids in Sub-Net i reaches
a maximum MpyTar,,;- Otherwise, the least activated
centroid in Sub-Net ¢ is moved to LTM Net 3. This
process corresponds to Phase 2. In Fig. 2, the output
of the HA-GRNN Oppgr is chosen as the largest value
among the weighted LTM net outputs Orram,: (i =
1,2,---,L):

Onvegr = max(vi-Orrm,1, v2-OLrme2, -+,

vr - OLrm,L), (4)

where vy >> vy > w3 > --- > vr. Note that the
weight value v, for Orra,1 is given relatively larger
than the others. This discrimination indicates the for-
mation of the ‘intuitive output’ from the HA-GRNN.

After the formation of the LTM nets, reconfigura-
tion of the LTM nets is considered in Phase 3 in order
to ‘shape up’ the pattern space spanned by the cen-
troids in the LTM Net (2 to L). This process may be
invoked at particular time. During the reconfiguration
phase, presentation of any incoming input pattern vec-
tor is not allowed to process.

In Phase 4, some of the centroids which keep rela-
tively strong activation in a certain period in LTM Net
(2 to L) are moved to LTM Net 1. Each centroid newly
assigned in LTM Net 1 eventually forms an RBF-NN
and has a direct connection from the input vector.

IV. Interpretation of Intuition and

Consciousness

A. A Model of Intuition by an HA-GRNN

In our daily life, we sometimes encounter such an oc-
casion of which we feel the thing/matter is true but
neither can we explain the reason why nor find the the
evidence or proof of it. This is referred to as the notion
of, what is called, “intuition”.

Conjecture 1: In the HA-GRNN context, in-
tuition can be interpreted such that, for a par-
ticular incoming input pattern vector there ex-
ists a certain set of centroids with abnormally
strong activation within the LTM nets.

The above is drawn from the standpoint that the
notion of intuition can be explained in terms of the
information processing pertaining to a particular ac-
tivity of neurons within brain (e.g., see [6]).

The evidence for referring to the output of LTM Net
1 as intuitive output is that LTM Net 1 is formed after

a relatively long and iterative exposition of incoming
input pattern vectors which results in strong excita-
tion of some centroids in LTM Net (2 to L). In other
words, the transition of the centroids from the STM
to LTM Net (2 to L) is referred to as normal learn-
ing process, whereas that from LTM Net (2 to L) to
LTM Net 1 gives the chances of generating “intuitive”
HA-GRNN outputs.

B. Interpreting the Notion of Consciousness
by an HA-GRNN

The word “consciousness” is quite intangible and the
explicit definition of consciousness is awkward enough,
due to its inherently too broad and complicated mean-
ing involved. Due to its ambiguity, the utility of the
terminology ‘consciousness’ here is hence limited.

In the context of HA-GRNN, the model in [8] co-
incides with the evidence of having an ‘hierarchical’
structure for representing the notion of consciousness.
In the context, the following conjecture can be there-
fore drawn:

Conjecture 2: The state of being ‘conscious’ of
something is represented in terms of the cen-
troids within the STM.

Accodingly, the following Phase 5 (at ¢ = t3) is ap-
pended to the evolution of an HA-GRNN:

[Phase 5: Formation of Consciousness States]

Step 1: Collect m centroids of which number of acti-
vation count is the largest within the LTM nets
for particular classes.

Step 2: Add the copies of the m centroids back in-
to the STM, where Msry — m most activated
STM centroids are kept untouched. The m cen-
troids so selected remain within the STM for a
certain long period, without changing their cen-
troid vectors, except the radii.

It is also postulated that the ratio between the m
centroids and the rest of the Mgryr — m centroids in
the STM explains the ‘level of consciousness’. There-
fore, the following conjecture can also be drawn;

Conjecture 3: The level of consciousness can
be determined by the ratio between the num-
ber of the m most activated centroids selected
from the LTM nets and that of the remaining
Msty —m in the STM.

Conjecture 3 is also related to the neurophysiolog-
ical evidence of ‘rehearsing’ activity [7] in which the
information acquired during learning would be grad-
ually stored as a long-term memory after rehearsing.
In the HA-GRNN context, an incoming input pattern
vector can be compared to the input information to
the brain and are temporally stored within the STM.
Then, during the evolution, the information represent-
ed by the STM centroids is selectively transferred to
the LTM nets in Phases 1-3. In contrast, the cen-
troids within the LTM nets may be transferred back
to the STM, because ‘consciousness’ of certain classes



is occurred at particular moments. In pattern classifi-
cation tasks, one may limit the number of the classes
to N < N4, for representing consciousness in a way
that “The HA-GRNN is conscious of only N classes
among a total of Np,q;.”

V. Simulation Study

In the simulation, an HA-GRNN is constructed using
the data extracted from SFS database [9]. The data
set used consists of a total of 900 utterances of the
digits from /ZERO/ to /NINE/ recorded in English
by nine different speakers (including even numbers of
female and male speakers). The data set was then ar-
bitrarily partitioned into two sets; one for constructing
an HA-GRNN (i.e., the incoming pattern set) and the
other for testing. The incoming pattern set contains
a total of 540 speech samples, where 54 samples were
chosen for each digit, while the testing consists of a
total of 360 samples (36 samples per each digit). (The
evolution within Phase 1 to 4 was therefore eventually
stopped at ¢t = 540.) Each utterance is sampled at
20kHz and was converted into the input vector of the
HA-GRNN with a normalized set of 256 data points
obtained by the well-known LPC-mel-cepstral analy-
sis.

A. Parameter Setting

In the simulation study, the LTM parameters,
]\4'[,7’]\/[1 = 5, and JWLTM2 = MLTM,3 = 40, were used.
For the STM, the choices, Mgy and A = 0.6, were
made to sparsely but reasonably cover all the ten class-
es during the construction. The number of sub-nets in
LTM nets was equally fixed to 10 (i.e., for the ten dig-
its). With this setting, the total number of centroids
in LTM Net (1 to 3) Mr7rm,1otar yields 85. Then, to
give ’intuitive outputs’ from LTM Net 1, v; was fixed
to 2.0, while v; (i =2,3,---, L) were given by a linear
decay v; = 0.8(1 — 0.05(¢ — 2)). For the evolution, the
parameters, t; = 200, to = 201, and t3 = 300, were
used.

B. Simulation Results

To test the classification accuracy of the HA-GRNN,
the STM network was bypassed and the generalization
performance over the testing set was evaluated using
only LTM Nets (1 to 3). For comparison, a conven-
tional GRNN a total of 85 centroids obtained by the
well-known MacQueen’s k-means clustering algorithm
was also used, which yielded the overall generalization
performance of 75.0%. In the simulation, three cases,
without any consciousness states, with consciousness
of Digit /NINE/ only and that of Digits /FIVE/ and
/NINE/, were considered. For the first case without
consciousness, the generalization performance of the
HA-GRNN obtained was 84.4%, which outperform-
s that of the k-means. For the latter two cases, 10

among the 30 centroids in the STM was fixed and
used for representing consciousness. For the case of
Digit /NINE/ only, the overall generalization perfor-
mance was improved at 85.3%, while the case of Digits
/FIVE/ and /NINE/ was further improved at 86.9%.
In both the cases, the generalization performance of
the respective digits for the consciousness states were
improved.

VI. Conclusion

In this paper, the two psychological functions, intu-
ition and consciousness, have been modeled using a
newly proposed HA-GRNN. The concept of the HA-
GRNN and its evolution have been motivated from
biological studies. It has been justified that the no-
tions of intuition and consciousness can be interpreted
within the framework of evolution of the HA-GRNN.
In the simulation study, the models of both the psy-
chological functions have been introduced to construct
an HA-GRNN using the data set for digit voice classi-
fication tasks. The effectiveness has been investigated
and its superiority in comparison with a conventional
GRNN using the k-means clustering method has also
been confirmed. Future work is directed towards the
development of intelligent robots applyng the concept
of the HA-GRNN.
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